U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 445 results

Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.
Status:
First marketed in 1925
Source:
carbon dioxide
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Carbon dioxide is a colorless gas occurring naturally in Earth's atmosphere. Carbon dioxide is a primary carbon source for life on Earth. It is produced by all aerobic organisms during metabolism of carbohydrates and lipids. Carbon dioxide is used in food industry as an acidity regulator and for production of carbonated soft drinks and soda water. In medicine, carbon dioxide is commonly used as an insufflation gas for minimally invasive surgery (laparoscopy, endoscopy, and arthroscopy) to enlarge and stabilize body cavities to provide better visibility of the surgical area. A mixture of carbon dioxide and oxygen is used for stimulation of breathing after apnea, in anesthetic procedures to increase the depth of respiration, to facilitate blind intubations in anesthetic practice.
Status:
First marketed in 1921
Source:
vitamin D
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cholecalciferol (/ˌkoʊləkælˈsɪfərɒl/) (vitamin D3) is one of the five forms of vitamin D. Cholecalciferol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestation of vitamin D deficiency is rickets, which is seen in children and results in bony deformities including bowed long bones. Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet (UV) B radiation with a wavelength of 290–320 nanometers penetrates uncovered skin and converts cutaneous 7-dehydrocholesterol to previtamin D3, which in turn becomes vitamin D3. In supplements and fortified foods, vitamin D is available in two forms, D2 (ergocalciferol) and D3 (cholecalciferol) that differ chemically only in their side-chain structure. Vitamin D2 is manufactured by the UV irradiation of ergosterol in yeast, and vitamin D3 is manufactured by the irradiation of 7-dehydrocholesterol from lanolin and the chemical conversion of cholesterol. The two forms have traditionally been regarded as equivalent based on their ability to cure rickets and, indeed, most steps involved in the metabolism and actions of vitamin D2 and vitamin D3 are identical. Both forms (as well as vitamin D in foods and from cutaneous synthesis) effectively raise serum 25(OH) D levels. Firm conclusions about any different effects of these two forms of vitamin D cannot be drawn. However, it appears that at nutritional doses, vitamins D2 and D3 are equivalent, but at high doses, vitamin D2 is less potent. The American Academy of Pediatrics (AAP) recommends that exclusively and partially breastfed infants receive supplements of 400 IU/day of vitamin D shortly after birth and continue to receive these supplements until they are weaned and consume ≥1,000 mL/day of vitamin D-fortified formula or whole milk. Cholecalciferol is used in diet supplementary to treat Vitamin D Deficiency. Cholecalciferol is inactive: it is converted to its active form by two hydroxylations: the first in the liver, the second in the kidney, to form calcitriol, whose action is mediated by the vitamin D receptor, a nuclear receptor which regulates the synthesis of hundreds of enzymes and is present in virtually every cell in the body. Calcitriol increases the serum calcium concentrations by increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein.
Status:
First marketed in 1921

Class (Stereo):
CHEMICAL (ABSOLUTE)



Glucose is a sugar with the molecular formula C6H12O6. The D-isomer (D-glucose), also known as dextrose, occurs widely in nature, but the L-isomer (L-glucose) does not. Glucose is made during photosynthesis from water and carbon dioxide, using energy from sunlight. The reverse of the photosynthesis reaction, which releases this energy, is a very important source of power for cellular respiration. Glucose is stored as a polymer, in plants as starch and in animals as glycogen, for times when the organism will need it. Glucose circulates in the blood of animals as blood sugar. Glucose can be obtained by hydrolysis of carbohydrates such as milk, cane sugar, maltose, cellulose, glycogen etc. It is however, manufactured by hydrolysis of cornstarch by steaming and diluting acid. Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75 kilocalories (16 kilojoules) of food energy per gram. Breakdown of carbohydrates (e.g. starch) yields mono- and disaccharides, most of which is glucose. Use of glucose as an energy source in cells is by either aerobic respiration, anaerobic respiration, or fermentation. All of these processes follow from an earlier metabolic pathway known as glycolysis. The insulin reaction, and other mechanisms, regulate the concentration of glucose in the blood. Glucose supplies almost all the energy for the brain, so its availability influences psychological processes. When glucose is low, psychological processes requiring mental effort (e.g., self-control, effortful decision-making) are impaired. Ingested glucose is absorbed directly into the blood from the intestine and results in a rapid increase in the blood glucose level. Glucose is used to manage hypoglycemia and for intravenous feeding. Nausea may occur after ingesting glucose, but this also may be an effect of the hypoglycemia which is present just prior to ingestion. Other adverse effects include increased blood glucose, injection site leakage of fluid (extravasation), injection site inflammation, and bleeding in the brain.
Status:
First marketed in 1921
Source:
Sodium Nitrite U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Nitrite Ion is a symmetric anion with equal N–O bond lengths. Nitrite is important in biochemistry as a source of the potent vasodilator nitric oxide. Nitrate or nitrite (ingested) under conditions that result in endogenous nitrosation has been classified as "Probably carcinogenic to humans" (Group 2A) by International Agency for Research on Cancer (IARC), the specialized cancer agency of the World Health Organization (WHO) of the United Nations. Sodium nitrite is used for the curing of meat because it prevents bacterial growth and, as it is a reducing agent (opposite of oxidation agent), in a reaction with the meat's myoglobin, gives the product a desirable pink-red "fresh" color, such as with corned beef. This use of nitrite goes back to the Middle Ages, and in the US has been formally used since 1925. Because of the relatively high toxicity of nitrite (the lethal dose in humans is about 22 milligrams per kilogram of body weight), the maximum allowed nitrite concentration in meat products is 200 ppm. At these levels, some 80 to 90% of the nitrite in the average U.S. diet is not from cured meat products, but from natural nitrite production from vegetable nitrate intake. Under certain conditions – especially during cooking – nitrites in meat can react with degradation products of amino acids, forming nitrosamines, which are known carcinogens. However, the role of nitrites (and to some extent nitrates) in preventing botulism by preventing C. botulinum endospores from germinating have prevented the complete removal of nitrites from cured meat, and indeed by definition in the U.S., meat cannot be labeled as "cured" without nitrite addition. They are considered irreplaceable in the prevention of botulinum poisoning from consumption of cured dry sausages by preventing spore germination. Nitrite is a member of the drug class antidotes and is used to treat Cyanide Poisoning.
Status:
First marketed in 1921
Source:
Benzoic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Benzoic acid is a natural ingredient occurring in many foodstuffs and in plant extracts. Benzoic acid, its salts and esters are used as preservatives in cosmetic products, with a maximum concentration of 0.5 %. Benzoic acid and sodium benzoate are on the FDA list of substances that are generally recognized as safe (GRAS). Both may be used as antimicrobial agents, flavouring agents and as adjuvants with a current maximum level of 0.1% in food. Benzoic acid is a constituent of Whitfield Ointment, which is used for the treatment of fungal skin diseases such as tinea, ringworm, and athlete's foot. Adverse effect of Whitfield Ointment: occasionally, a localized mild inflammatory response occurs.
Status:
First marketed in 1921
Source:
Emulsion of Cod Liver Oil with Calcium Phosphate N.F.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Phosphate is a major intracellular anion in mammals. Hydrogen phopshate is a protonated form of phosphate. In serum, phosphate exists in two forms, dihydrogen phosphate (H2PO4) and its salt, mono-hydrogen phosphate (HPO4). At the physiologic pH of 7.40, the pK of H2PO4 is 6.8 and the ratio of HPO4 to H2PO4 is 4:1. Altered level of phosphate can be an indicator of various disorders, such as chronic renal failure, hypoparathyroidism, familial intermittent hyperphosphatemia, endocrine disorders, hyperthyroidism, acromegaly, juvenile hypogonadism, etc. These disorders may lead to either hyper- or hypophosphatemia, which can be caused by cellular shifts of phosphate. Patients with hypophosphatemia can be treated with dietary phosphate supplements (potassium phosphate, for example).
Status:
First marketed in 1921
Source:
Ammonia Water U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



The ammonium cation is a positively charged polyatomic ion with the chemical formula NH4+. Ammonium ions are a waste product of the metabolism of animals. In fish and aquatic invertebrates, it is excreted directly into the water. In mammals, sharks, and amphibians, it is converted in the urea cycle to urea, because urea is less toxic and can be stored more efficiently. In birds, reptiles, and terrestrial snails, metabolic ammonium is converted into uric acid, which is solid and can therefore be excreted with minimal water loss. Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source. The ammonium ion (NH4+) in the body plays an important role in the maintenance of acid-base balance. The kidney uses ammonium (NH4+) in place of sodium (Na+) to combine with fixed anions in maintaining acid-base balance, especially as a homeostatic compensatory mechanism in metabolic acidosis. When a loss of hydrogen ions (H+) occurs and serum chloride (Cl–) decreases, sodium is made available for combination with bicarbonate (HCO3–). This creates an excess of sodium bicarbonate (NaHCO3) which leads to a rise in blood pH and a state of metabolic alkalosis. The therapeutic effects of Ammonium (as Ammonium Chloride) depend upon the ability of the kidney to utilize ammonia in the excretion of an excess of fixed anions and the conversion of ammonia to urea by the liver, thereby liberating hydrogen (H+) and chloride (Cl–) ions into the extracellular fluid.
Status:
First marketed in 1921
Source:
Potassium Sulphate N.F.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

SULFATE (as sodium sulfate, potassium sulfate, and magnesium sulfate) is a component of SUPREP Bowel Prep Kit. It is an osmotic laxative indicated for cleansing of the colon in preparation for colonoscopy in adults. Sulfate salts provide sulfate anions, which are poorly absorbed. The osmotic effect of unabsorbed sulfate anions and the associated cations causes water to be retained within the gastrointestinal tract. SUPREP Bowel Prep Kit, when ingested with a large volume of water, produces copious watery diarrhea.
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.