U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 18 results

Progesterone is indicated in amenorrhea and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids of uterine cancer. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Progesterone is a naturally occurring steroid that is secreted by the ovary, placenta, and adrenal gland. In the presence of adequate estrogen, progesterone transforms a proliferative endometrium into a secretory endometrium. Progesterone is necessary to increase endometrial receptivity for implantation of an embryo. Once an embryo is implanted, progesterone acts to maintain a pregnancy. Progesterone shares the pharmacological actions of the progestins. Progesterone binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progesterone will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. In women who have adequate endogenous estrogen, progesterone transforms a proliferative endometrium into a secretory one. Progesterone is metabolized primarily by the liver largely to pregnanediols and pregnanolones. Pregnanediols and pregnanolones are conjugated in the liver to glucuronide and sulfate metabolites. Progesterone metabolites that are excreted in the bile may be deconjugated and may be further metabolized in the gut via reduction, dehydroxylation, and epimerization. Common progesterone side effects may include: drowsiness, dizziness; breast pain; mood changes; headache; constipation, diarrhea, heartburn; bloating, swelling in your hands or feet; joint pain; hot flashes; or vaginal discharge.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
Possibly Marketed Outside US
Source:
NCT01065220: Phase 4 Interventional Completed Transsexualism
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Lynestrenol is a progestogen structurally related to norethisterone; it is used singularly, or as the progestogenic component of oral contraceptives. It is also used in treatments for menstrual disorders. Lynestrenol is typically used as an oral contraceptive, but also for the treatment of menstrual disorders like: Oligo-menorrhea and hypo-menorrhea; Polymenorrhoea; Fibrocystic mastopathy; Endometriosis; Endometrial carcinoma and/or metastases etc. As a synthetic oral progestogen, Lynestrenol has similar effects as that of the natural progesterone hormone. It has a strong progestational effect on the uterine endometrium by transforming the proliferative endometrium into a secretory one. It also inhibits the secretion of gonadotropin, suppresses maturation of follicles in the ovaries and ovulation, and reduces menstrual bleeding. Lynestrenol has minimal estrogenic, androgenic and anabolic effects.
Gonadorelin is a synthetic decapeptide prepared using solid phase peptide synthesis. GnRH is responsible for the release of follicle stimulating hormone and leutinizing hormone from the anterior pitutitary. In the pituitary GnRH stimulates synthesis and release of FSH and LH, a process that is controlled by the frequency and amplitude of GnRH pulses, as well as the feedback of androgens and estrogens. The pulsatility of GnRH secretion has been seen in all vertebrates, and it is necessary to ensure a correct reproductive function. Thus a single hormone, GnRH, controls a complex process of follicular growth, ovulation, and corpus luteum maintenance in the female, and spermatogenesis in the male. Its short half life requires infusion pumps for its clinical use. Gonadorelin is used for the treatment of amenorrhea, delayed puberty, and infertility the administration of gonadorelin is used to simulate the physiologic release of GnRH from the hypothalamus in treatment of delayed puberty, treatment of infertility caused by hypogonadotropic hypogonadism, and induction of ovulation in those women with hypothalamic amenorrhea. This results in increased levels of pituitary gonadotropins LH and FSH, which subsequently stimulate the gonads to produce reproductive steroids.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In 1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same synthetic scheme as Bachmann, et al., Anner and Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.

Showing 1 - 10 of 18 results