U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 29 results

Status:
First marketed in 1937
Source:
Oreton-F by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Status:
Investigational
Source:
NCT01061970: Phase 2 Interventional Completed Hypogonadism
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Fispemifene acts via estrogen receptors and has tissue-selective estrogenic and/or antiestrogenic effects – it has antagonist activity in breast tissue and acts as an estrogen agonist in bone. Due to its low estrogenicity in male rats, it might also be applicable for men. Fispemifene exhibits both antiestrogenic and anti-inflammatory action in the prostate. It could be considered as a new therapeutic option in the treatment and prevention of prostatic inflammation. Fispemifene had been in phase II clinical trials for the oral treatment of hypogonadism.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Testosterone glucoside is a conjugated form of steroid testosterone investigated at Strakan Ltd (now Kyowa Hakko Kirin Co. Ltd). Testosterone glucoside is bioavailable when given orally, as well as intramuscularly, and is readily metabolised to testosterone. It had been in Phase II study for the treatment of hypogonadism, however development was discontinued.
Status:
Possibly Marketed Outside US
Source:
PROVIRON by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Mesterolone is an androgen receptor agonist which was developed for hormone replacement therapy in males suffering from androgen deficiency and related disorders. Mesterolone is known under the name Proviron. The drug is also used by bodybuilders and athletes.
Testosterone valerate, or testosterone pentanoate, is a synthetic, steroidal androgen. It is a short-to-medium duration C17β valerate ester of testosterone, with a terminal half-life of approximately twice that of the short-acting testosterone propionate. Testosterone valerate is available exclusively as a component of the veterinary drug Deposterona developed by Syntex Animal Health Company, which is marketed in Mexico. Deposterona also contains testosterone acetate and testosterone undecanoate and is used to treat impotence, weakness, fatigue and hypogonadism in male breeding animals (cows, pigs, canines, sheep), as well as a general protein-sparing anabolic. It is administered via intramuscular injection and acts as a long-lasting prodrug of testosterone. Esterified forms of testosterone are designed to prolong the window of therapeutic effect following administration, allowing for less frequent injection schedule compared to injections of unesterified steroid. Deposterona is also used for bodybuilding purposes in men and not recommended for women performance-enhancing purposes due to its strong androgenic nature, side effects, and slow-acting characteristics (making blood levels difficult to control). Deposterona is only known to be manufactured in Mexico. Because it contains a low concentration of steroid,this product is not in high demand, and not readily diverted for illicit sale.
Testosterone acetate, a testosterone ester, is an androgen. It is a steroid lipid molecule considered to be practically insoluble (in water) and basic. It is an anabolic steroid and testosterone prodrug. Testosterone acetate has a faster rate of absorption in the body then other esters. In combination with two other testosterone esters, testosterone valerate and testosterone undecanoate, it is a part of Deposterona, an injectable veterinary blend steroid preparation marketed in Mexico. With its blend of slow and fast-acting esters, Deposterona is essentially a low dosed alternative to Sustanon and is used primarily to treat impotence, weakness, fatigue, and hypogonadism in male breeding animals (cows, pigs, canines, and sheep), and also as a general protein-sparing anabolic. Testosterone acetate is classified as a Schedule III drug by the United States Drug Enforcement Agency and is only legal with a prescription due to his potential for misuse and abuse.
Protodioscin is a steroidal saponin compound found in a number of plant species, most notably in the Tribulus, Trigonella and Dioscorea families. Extracts from T. terrestris standardised have been demonstrated to produce proerectile effects in isolated tissues and aphrodisiac action in several animal species. Protodioscin have shown cytotoxic effects against a number of leukemia and solid tumors cell lines.
Gonadorelin is a synthetic decapeptide prepared using solid phase peptide synthesis. GnRH is responsible for the release of follicle stimulating hormone and leutinizing hormone from the anterior pitutitary. In the pituitary GnRH stimulates synthesis and release of FSH and LH, a process that is controlled by the frequency and amplitude of GnRH pulses, as well as the feedback of androgens and estrogens. The pulsatility of GnRH secretion has been seen in all vertebrates, and it is necessary to ensure a correct reproductive function. Thus a single hormone, GnRH, controls a complex process of follicular growth, ovulation, and corpus luteum maintenance in the female, and spermatogenesis in the male. Its short half life requires infusion pumps for its clinical use. Gonadorelin is used for the treatment of amenorrhea, delayed puberty, and infertility the administration of gonadorelin is used to simulate the physiologic release of GnRH from the hypothalamus in treatment of delayed puberty, treatment of infertility caused by hypogonadotropic hypogonadism, and induction of ovulation in those women with hypothalamic amenorrhea. This results in increased levels of pituitary gonadotropins LH and FSH, which subsequently stimulate the gonads to produce reproductive steroids.
Status:
First marketed in 1937
Source:
Oreton-F by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Status:
First marketed in 1937
Source:
Oreton-F by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.