{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2019)
Source:
NDA212018
(2019)
Source URL:
First approved in 2019
Source:
NDA212018
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Erdafitinib (JNJ-42756493) is a potent and selective orally bioavailable, pan fibroblast growth factor receptor (FGFR) inhibitor with potential antineoplastic activity. It was discovered in collaboration with Janssen Pharmaceutica, N.V. from a partnership which commenced in June 2008. Astex’s FGFr inhibitor program originated from a collaboration initiated in 2005 with the Cancer Research UK Drug Discovery Group at the Newcastle Cancer Centre (Newcastle University UK), and Cancer Research Technology Limited. JNJ42756493 is currently being evaluated by Janssen in Phase 2 clinical trials in patients with urothelial cancer, advanced hepatocellular carcinoma, advanced non-small lung cancer, esophageal cancer or cholangiocarcinoma. JNJ-42756493 is a potent, oral pan-FGFR tyrosine kinase inhibitor with half-maximal inhibitory concentration values in the low nanomolar range for all members of the FGFR family (FGFR1 to FGFR4), with minimal activity on vascular endothelial growth factor receptor (VEGFR) kinases compared with FGFR kinases (approximately 20-fold potency difference). In vitro, the proliferation of cells treated with JNJ-42756493 is decreased, associated with increased apoptotic death and decreased cell survival. It is also in phase I trials for the treatment of advanced refractory solid tumors or advanced refractory hematologic cancer.
Status:
US Approved Rx
(2011)
Source:
NDA202570
(2011)
Source URL:
First approved in 2011
Source:
NDA202570
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
(S)-crizotinib was discovered as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 as a promising novel class of anticancer agents.
Status:
US Approved Rx
(2014)
Source:
ANDA201742
(2014)
Source URL:
First approved in 1999
Source:
TEMODAR by MERCK SHARP DOHME
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
NEO 212 is novel DNA alkylating agent exhibiting superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo. NEO212 is a conjugate of temozolomide (TMZ,) with the natural product perillyl alcohol (POH). NEO 212 causes DNA damage and cell death much more efficiently than TMZ because linkage with POH increased it's biological half-life and thus provided greater opportunity for placement of cytotoxic DNA lesions.
Status:
US Approved Rx
(1995)
Source:
NDA020220
(1995)
Source URL:
First approved in 1995
Source:
NDA020220
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Iopromide is a molecule used as a contrast medium. It is a low osmolar, non-ionic contrast agent for intravascular use. It is commonly used in radiographic studies such as intravenous urograms, brain computer tomography (CT) and CT pulmonary angiograms (CTPAs). It appears to increase the risk of biguanide induced lactic acidosis. Interleukins are associated with an increased prevalence of delayed hypersensitivity reactions after iodinated contrast agent administration. Most common adverse reactions (>1%) are headache, nausea, injection site and infusion site reactions, vasodilatation, vomiting, back pain, urinary urgency, chest pain, pain, dysgeusia, and abnormal vision.
Status:
US Approved Rx
(2006)
Source:
ANDA077880
(2006)
Source URL:
First approved in 1995
Source:
GLUCOPHAGE by EMD SERONO INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines.
Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Status:
US Approved Rx
(2014)
Source:
ANDA204333
(2014)
Source URL:
First approved in 1994
Source:
FLUDEOXYGLUCOSE F18 by DOWNSTATE CLINCL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Fludeoxyglucose F-18 is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging.
Status:
US Approved Rx
(2019)
Source:
NDA211855
(2019)
Source URL:
First approved in 1946
Source:
NDA006035
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dimethyl maleate is an organic compound, the (Z)-isomer of the dimethyl ester of fumaric acid. Dimethyl maleate can be synthesized from maleic anhydride and methanol, with sulfuric acid acting as acid catalyst, via a nucleophilic acyl substitution for the monomethyl ester, followed by a Fischer esterification reaction for the dimethyl ester. Dimethyl maleate is used in many organic syntheses as a dienophile for diene synthesis. It is used as an additive and intermediate for plastics, pigments, pharmaceuticals, and agricultural products. It is also an intermediate for the production of paints, adhesives, and copolymers.
Status:
US Approved Rx
(2016)
Source:
NDA204630
(2016)
Source URL:
First marketed in 1921
Source:
Methylthionine Chloride U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methylene blue, also known as methylthioninium chloride, is a medication from WHO's list of essential medicines. Upon administration, methylene blue is converted to leukomethylene blue by erythrocyte methemoblobin reductase in the presence of NADPH. Leukomethylene blue than reduces methemoglobin to oxyhemoglobin, thus restoring oxygen carrying capacity of the blood. Methylene blue is also used as a dye for various diagnostic procedures, for treatment of ifosfamide toxicity and for in vitro staining. Historically, it was used as a photosensitizer for photodynamic therapy for topical treatment of dermatologic or mucocutaneous infections, as an antidote for cyanide poisoning, but these applications are no longer approved. Methylene blue is investigated in clinical trials for treatment of septic shock and Alzheimer's disease.
Status:
US Approved Rx
(1986)
Source:
NDA018962
(1986)
Source URL:
First marketed in 1921
Source:
Syrup of Iron and Manganese Iodide N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Manganese citrate is generally recognized as safe direct food additive. Manganese citrate complex has being used in the determination of liver enzyme activities in the aging process and following treatment with aminoethylisothiuronium bromide hydrobromide (AET).
Status:
US Approved Rx
(2020)
Source:
NDA209376
(2020)
Source URL:
First marketed in 1921
Source:
Copper Sulphate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tetraamminecopper dihydroxide also known as Schweizer's Reagent dissolves cellulose; used in rayon production.