{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Codex Alimentarius" in comments (approximate match)
Status:
US Approved Rx
(1976)
Source:
NDA017641
(1976)
Source URL:
First marketed in 1921
Source:
Elixir of Iron Lactate N.F.
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients
with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
US Approved Rx
(2013)
Source:
NDA206024
(2013)
Source URL:
First marketed in 1899
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Elemental nitrogen is a colorless, odorless, tasteless and mostly inert diatomic gas at standard conditions, constituting 78% by volume of Earth's atmosphere. Nitrogen occurs in all living organisms. It is a constituent element of amino acids and therefore of proteins and nucleic acids (DNA and RNA). Nitrogen is found in the chemical structure of almost all neurotransmitters and is a key component of alkaloids. Specific bacteria (e. g. Rhizobium trifolium) possess nitrogenase enzymes which can fix atmospheric nitrogen into a form (ammonium ion) which is chemically useful to higher organisms. Animals use nitrogen-containing amino acids from plant sources, as starting materials for all nitrogen-compound animal biochemistry, including the manufacture of proteins and nucleic acids. Animal metabolism of NO (nitric oxide) results in production of nitrite. Animal metabolism of nitrogen in proteins generally results in excretion of urea, while animal metabolism of nucleic acids results in excretion of urea and uric acid. The characteristic odor of animal flesh decay is caused by nitrogen-containing long-chain amines, such as putrescine and cadaverine. Decay of organisms and their waste products may produce small amounts of nitrate, but most decay eventually returns nitrogen content to the atmosphere, as molecular nitrogen. The circulation of nitrogen from the atmosphere through organics and then back to the atmosphere is commonly referred to as the nitrogen cycle. Nitrogen can be measured in urine with the Kjeldahl method or by spectrophotometric methods (enzymic tests). Total urinary nitrogen is calculated based on urea urinary nitrogen quantified with these methods. Liquid nitrogen (E941) is widely used in food industry as a freezing agent and as a protection against the impact of microorganisms. Nitrogen (E941) extends the period of validity of food and maintains its nutrients and is also used for packing products. In other fields of industry, nitrogen (E941) is useful in suppressing the combustion processes and in creating protective environment in order to avoid oxidation.
Medical nitrogen has various medical uses, especially in liquid form when it provides temperatures as low as -196° C. Applications of medical nitrogen in the healthcare environment may include the following:
* In cryopreservation for the long-term preservation of blood, blood components, other cells, body fluids or tissue samples.
* In cryosurgery for minor surgical procedures in dermatology.
* As a component in many gas mixtures.
* As a displacement medium for sterile equipment, a non-oxidising displacement medium in pharmaceutical vials and as a propellant in pressurised aerosol dispensers.
* As a source of pneumatic pressure to power gas-operated medical devices.
* As a coolant for carbon dioxide surgical lasers.
Status:
US Approved Rx
(2019)
Source:
ANDA212172
(2019)
Source URL:
First marketed in 1894
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methenamine is an antibacterial agent for preventing recurrent urinary tract infection. It can be used as methenamine hippurate or methenamine mandelate preparations and is United States Food and Drug Administration-approved. Methenamine exerts its activity because it is hydrolyzed to formaldehyde in acid urine.
Status:
US Approved Rx
(2013)
Source:
NDA205704
(2013)
Source URL:
First marketed in 1844
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitrous oxide (N2O, laughing gas) was first discovered by the English scientist Joseph Priestly and has been used for more than 150 years. It has remained one of the most widely used anesthetics in both dental and medical applications. This small and simple inorganic chemical molecule has indisputable effects of analgesia, anxiolysis, and anesthesia that are of great clinical interest. As a general anesthetic, it is very weak and is generally not used as a single agent. It may be used as a carrier gas with oxygen in combination with more potent general inhalational gases for surgical anesthesia. In dentistry, it is commonly used as a single agent (with oxygen) for partial sedation, most commonly in pediatric dental populations. Findings to date indicate that the analgesic effect of N2O is opioid in nature, and, like morphine, may involve a myriad of neuromodulators in the spinal cord. The anxiolytic effect of N2O, on the other hand, resembles that of benzodiazepines and may be initiated at selected subunits of the gamma-aminobutyric acid type A (GABA(A)) receptor. Similarly, the anesthetic effect of N2O may involve actions at GABA(A) receptors and possibly at N-methyl-D-aspartate receptors as well.
Status:
US Approved OTC
Source:
21 CFR 333.310(a) acne benzoyl peroxide
Source URL:
First approved in 1984
Source:
NDA050557
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Benzoyl peroxide (BPO) is an organic compound in the peroxide family. It consists of two benzoyl groups bridged by a peroxide link. It is one of the most important organic peroxides in terms of applications and the scale of its production. Benzoyl peroxide is used as an acne treatment, for bleaching hair and teeth. Adverse reactions are: dryness and urticarial reaction, contact dermatitis, application site burning, application site irritation and skin irritation.
Status:
US Approved OTC
Source:
21 CFR 349.12(d)(5) ophthalmic:demulcents propylene glycol
Source URL:
First approved in 1961
Source:
VOSOL PROPYLENE GLYCOL by WAMPOLE LABS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
PROPYLENE GLYCOL is a component of SYSTANE® Lubricant. It is used for the temporary relief of burning and irritation due to dryness of the eye.
Status:
US Approved OTC
Source:
21 CFR 332.10 antiflatulent simethicone
Source URL:
First approved in 1952
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Silicon dioxide (silica) is most commonly found in nature as quartz, as well as in various living organisms. Silicon dioxide one of the most complex and most abundant families of materials, existing both as several minerals and being produced synthetically. In food and pharmaceutical industry silica is a common additive, where it is used primarily as a flow in powdered foods, or to adsorb water in hygroscopic application. In pharmaceutical products, silica aids powder flow when tablets are formed.
Status:
US Approved OTC
Source:
21 CFR 349.12(d)(1) ophthalmic:demulcents glycerin
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Glycerin (glycerol) is 3-carbon alcohol naturally occurring in the human body. It is the structural backbone triacylglycerol molecules, and can also be converted to a glycolytic substrate for subsequent metabolism. Glycerin is a colorless, odorless, viscous, sweet-tasting liquid. The FDA classifies glycerol as "generally recognized as safe". Glycerin is used in the pharmaceutical industry as a sweetener in syrups, lozenges, and as an excipient in eyewash solutions. As an individual prescription product, glycerin has uses as a hyperosmotic, osmotic diuretic, and ophthalmic agent. It may be used as an eye drop in the treatment of glaucoma to reduce intraocular pressure, as a solution or suppository for short-term treatment of constipation, to evacuate the bowel prior to a colonoscopy, and in some ocular surgeries. It may be given intravenously to reduce pressure inside the brain and used externally on the skin as a moisturizer. Glycerin has many other uses in the agricultural, food and pharmaceutical industry.
Status:
US Approved OTC
Source:
21 CFR 331.11(m) antacid:tartrate-containing tartrate (acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Bitartrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved OTC
Source:
21 CFR 331.11(m) antacid:tartrate-containing tartrate (acid or salt)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tartaric acid is found in many plants such as grapes, tamarinds, pineapples, mulberries and so on. Wine lees (called mud in the US), the sediment collected during the fermentation of grapes, contains potassium bitartrate (potassium hydrogen tartrate) as its major component. L-(+)-tartaric acid is an enantiomer of tartaric acid. Twenty five years before the tetrahedral structure for carbon was proposed in 1874 to explain the optical activity and other properties of organic compounds, Louis Pasteur discovered the existence of enantiomerism in tartaric acid. L-(+)-tartaric acid is widely used in food and beverage as acidity regulator with E number E334.