U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 91 - 100 of 3153 results

Hydrocortisone is the main glucocorticoid secreted by the adrenal cortex. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). Hydrocortisone is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease.
Status:
First approved in 1948
Source:
Sulfamylon by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Mafenide is a sulfonamide-type medication used as an antibiotic. It is indicated for use as an adjunctive topical antimicrobial agent to control bacterial infection when used under moist dressings over meshed autografts on excised burn wounds. Mafenide is not antagonized by pABA, serum, pus or tissue exudates, and there is no correlation between bacterial sensitivities to mafenide and to the sulfonamides. A single case of bone marrow depression and a single case of an acute attack of porphyria have been reported following therapy with mafenide acetate. Fatal hemolytic anemia with disseminated intravascular coagulation, presumably related to a glucose-6-phosphate dehydrogenase deficiency, has been reported following therapy with mafenide acetate. Other adverse reactions are: pain or burning sensation, rash and pruritis, erythema, skin maceration from prolonged wet dressings, facial edema, swelling, hives, blisters, eosinophilia.
Status:
First approved in 1947
Source:
Chloroguanide by Squibb
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Proguanil is a prophylactic antimalarial drug, which works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells. Proguanil in combination with atovaquone are marked under the brand name malarone, which is indicated for the treatment of acute, uncomplicated P. falciparum malaria and for the prophylaxis of Plasmodium falciparum malaria, including in areas where chloroquine resistance has been reported. Atovaquone and proguanil, interfere with 2 different pathways involved in the biosynthesis of pyrimidines required for nucleic acid replication. Atovaquone is a selective inhibitor of parasite mitochondrial electron transport. Proguanil hydrochloride primarily exerts its effect by means of the metabolite cycloguanil, a dihydrofolate reductase inhibitor. Inhibition of dihydrofolate reductase in the malaria parasite disrupts deoxythymidylate synthesis. Recently were done experiments, which confirmed the hypothesis that proguanil might act on another target than dihydrofolate reductase. In addition, was made conclusion, that effectiveness of malarone was due to the synergism between atovaquone and proguanil and may not require the presence of cycloguanil.
Dimercaprol (2, 3-dimercapto-1-propanol) or British anti-Lewisite (BAL), is a colorless or almost colorless liquid chelating agent having a disagreeable, mercaptan-like odor. Dimercaprol was developed at Oxford University during World War II as a means of treating and reversing poisoning from Lewisite, an arsenical gas used in chemical warfare (and thus initially called British anti-Lewisite [BAL]). The sulfhydryl groups of dimercaprol form complexes with certain heavy metals thus preventing or reversing the metallic binding of sulfhydryl-containing enzymes. Parenterally administered dimercaprol is used to treat arsenic, gold, copper and mercury poisoning. It is indicated in acute lead poisoning when used concomitantly with edetate clcium disodium. Dimercaprol is occasionally used in the initial treatment of severe, symptomatic Wilson disease, but generally for a short time only.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ethinyl estradiol is a synthetic derivative of the natural estrogen estradiol. It is one of two estrogens currently used in oral contraceptive pills. The other, mestranol, is converted to ethinyl estradiol before it is biologically active. Ethinyl estradiol and norethindrone are used together as an oral contraceptive agent. Estrogens diffuse into their target cells and interact with a protein receptor. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. This cascade is initiated by initially binding to the estrogen receptors. The combination of an estrogen with a progestin suppresses the hypothalamic-pituitary system, decreasing the secretion of gonadotropin-releasing hormone (GnRH). Used for treatment of moderate to severe vasomotor symptoms associated with the menopause, female hypogonadism, prostatic carcinoma-palliative therapy of advanced disease, breast cancer, as an oral contraceptive, and as emergency contraceptive.
Estradiol an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. In humans, it is produced primarily by the cyclic ovaries and the placenta. It is also produced by the adipose tissue of men and postmenopausal women. The 17-alpha-isomer of estradiol binds weakly to estrogen receptors (receptors, estrogen) and exhibits little estrogenic activity in estrogen-responsive tissues. Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estradiol is used for the treatment of urogenital symptoms associated with post-menopausal atrophy of the vagina (such as dryness, burning, pruritus and dyspareunia) and/or the lower urinary tract (urinary urgency and dysuria). Estradiol is marketed under the brand name Climara (among others), indicated for: the treatment of moderate to severe vasomotor symptoms due to menopause, treatment of symptoms of vulvar and vaginal atrophy due to menopause, treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure and prevention of postmenopausal osteoporosis.
Status:
First marketed in 1937
Source:
Oreton-F by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Progesterone is indicated in amenorrhea and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids of uterine cancer. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Progesterone is a naturally occurring steroid that is secreted by the ovary, placenta, and adrenal gland. In the presence of adequate estrogen, progesterone transforms a proliferative endometrium into a secretory endometrium. Progesterone is necessary to increase endometrial receptivity for implantation of an embryo. Once an embryo is implanted, progesterone acts to maintain a pregnancy. Progesterone shares the pharmacological actions of the progestins. Progesterone binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progesterone will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. In women who have adequate endogenous estrogen, progesterone transforms a proliferative endometrium into a secretory one. Progesterone is metabolized primarily by the liver largely to pregnanediols and pregnanolones. Pregnanediols and pregnanolones are conjugated in the liver to glucuronide and sulfate metabolites. Progesterone metabolites that are excreted in the bile may be deconjugated and may be further metabolized in the gut via reduction, dehydroxylation, and epimerization. Common progesterone side effects may include: drowsiness, dizziness; breast pain; mood changes; headache; constipation, diarrhea, heartburn; bloating, swelling in your hands or feet; joint pain; hot flashes; or vaginal discharge.
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. It’s used as hameopatic in management of premenopausal and postmenopausal symptoms. In 1929, Butenandt isolated estrone from the urine of pregnant women. Estrone is known to be a carcinogen for human females as well as a cause of breast tenderness or pain, nausea, headache, hypertension, and leg cramps in the context of non-endogenous exposure. In men, estrone has been known to cause anorexia, nausea, vomiting, and erectile dysfunction. Estrone is relevant to health and disease states because of its conversion to estrone sulfate, a long-lived derivative. Estrone sulfate acts as a reservoir that can be converted as needed to the more active estradiol.
Manganese citrate is generally recognized as safe direct food additive. Manganese citrate complex has being used in the determination of liver enzyme activities in the aging process and following treatment with aminoethylisothiuronium bromide hydrobromide (AET).