{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
colfosceril palmitate
to a specific field?
There is one exact (name or code) match for colfosceril palmitate
Status:
US Previously Marketed
Source:
EXOSURF NEONATAL by GLAXOSMITHKLINE
(1990)
Source URL:
First approved in 1990
Source:
EXOSURF NEONATAL by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Colfosceril palmitate (dipalmitoylphosphatidylcholine) is a synthetic pulmonary surfactant, which is used in infants with respiratory distress syndrome it was approved in 1990, but nowadays it is under the state of canceled post-marketing. Colfosceril palmitate is reducing the tension and stabilizing the alveoli from collapsing.
Status:
US Previously Marketed
Source:
EXOSURF NEONATAL by GLAXOSMITHKLINE
(1990)
Source URL:
First approved in 1990
Source:
EXOSURF NEONATAL by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Colfosceril palmitate (dipalmitoylphosphatidylcholine) is a synthetic pulmonary surfactant, which is used in infants with respiratory distress syndrome it was approved in 1990, but nowadays it is under the state of canceled post-marketing. Colfosceril palmitate is reducing the tension and stabilizing the alveoli from collapsing.
Status:
US Approved Rx
(2015)
Source:
ANDA203802
(2015)
Source URL:
First approved in 2006
Source:
NDA021999
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Paliperidone (9-OH-risperidone) is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drug's therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. Very common adverse effects are: headache, tachycardia, somnolence and insomnia.
Status:
US Approved Rx
(1982)
Source:
ANDA062365
(1982)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Approved Rx
(2017)
Source:
ANDA204255
(2017)
Source URL:
First marketed in 1937
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Status:
US Approved Rx
(1986)
Source:
ANDA070755
(1986)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2022)
Source:
ANDA212025
(2022)
Source URL:
First marketed in 1880
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Apomorphine (brand names: Apokyn, Ixense, Spontane, Uprima) is indicated for the acute, intermittent treatment of hypomobility, “off” episodes (“end-of-dose wearing off” and unpredictable “on/off” episodes) in patients with advanced Parkinson’s disease. Apomorphine has been studied as an adjunct to other medications. It is a non-ergoline dopamine agonist with high in vitro binding affinity for the dopamine D4 receptor, and moderate affinity for the dopamine D2, D3, and D5, and adrenergic α1D, α2B, α2C receptors. The precise mechanism of action as a treatment for Parkinson’s disease is unknown, although it is believed to be due to stimulation of post-synaptic dopamine D2-type receptors within the caudate-putamen in the brain.
Status:
US Approved OTC
Source:
21 CFR 347.10(t) skin protectant zinc carbonate
Source URL:
First marketed in 1921
Source:
Precipitated Zinc Carbonate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Zinc monocarbonate (Zinc Carbonate) is an inorganic salt. In the United States, Zinc Carbonate may be used as an active ingredient in OTC drug products. When used as an active drug ingredient, the established name is Zinc Carbonate. Zinc monocarbonate is generally recognized as safe by FDA. It is used as skin protectant active ingredient. Zinc carbonate was found to retard the degradation of some poly(lactide-co-glycolide) (PLG) microspheres in vivo and in vitro. Adding Zinc Carbonate is essential during the preparation of PLGA microspheres. It can remarkably improve the stability of drugs in the acid microenvironment inside PLGA microspheres.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rofleponide is a third generation synthetic glucocorticosteroid. This compound has high affinity for the rat thymus glucocorticoid receptor and showed a very high biotransformation rate in the human liver. Rofleponide was being investigated for its anti-inflammatory, immunosuppressive and anti-anaphylactic activity. It was evaluated in phase II clinical trials for its safety and efficacy in allergic rhinitis and asthma, and in a preclinical study for use in inflammatory bowel disease, but development of this drug was discontinued. Rofleponide was never marketed.
Status:
Investigational
Source:
NCT01374321: Phase 2 Interventional Completed Acute Myocardial Infarctus
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT02561000: Phase 2 Interventional Completed Arterial Occlusive Diseases
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
PZ-128 (also known as P1pal7 ) is a cell-penetrating pepducin inhibitor of PAR1 that targets the receptor-G-protein interface on the inside surface of platelets. In preclinical studies, PZ-128 suppresses PAR1 aggregation and arterial thrombosis in guinea pigs and baboons and strongly synergized with oral clopidogrel. PZ-128 shows potent anti-metastatic and anti-angiogenic activity in Breast, Ovarian, and Lung Cancer preclinical studies. In clinical trials, PZ-128 shows a promising antiplatelet activity that provides rapid, specific, dose-dependent, and reversible inhibition of platelet protease-activated receptor-1 through a novel intracellular mechanism.