U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for leucomethylene blue

 
Status:
Investigational
Source:
INN:hydromethylthionine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


L-MTX is a second-generation tau protein aggregation inhibitor. It acts by reducing levels of aggregated or misfolded tau proteins, which are associated with the progressive neurodegeneration. It is currently under development for the treatment of Alzheimer’s disease.
Status:
Investigational
Source:
INN:hydromethylthionine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


L-MTX is a second-generation tau protein aggregation inhibitor. It acts by reducing levels of aggregated or misfolded tau proteins, which are associated with the progressive neurodegeneration. It is currently under development for the treatment of Alzheimer’s disease.
Brilliant Blue G is triphenylmethane dye that was developed for use in the textile industry but is now commonly used for staining proteins in analytical biochemistry. The Bradford assay is a standard, rapid dye-binding assay that uses Brilliant Blue G to quantify the amount of protein in a solution. Brilliant Blue G also acts as a selective inhibitor of the P2X purinoceptor channel P2X7 (IC50s = 10.1 and 265 nM for rat and human P2X7, respectively). In mice, it inhibits interleukin-1β expression and reduces neurological injury secondary to traumatic brain injury. Brilliant Blue G was used to prepare the protein reagent for the determination of protein content of the collagenase enzyme isolated from fish waste. It may be employed as a stain for the internal limiting membrane (ILM) for the macular hole (MH) and epiretinal membrane (ERM) surgery.
Trypan blue (trade name MembraneBlue, VisionBlue) is a vital stain used to selectively color dead tissues or cells blue. Live cells or tissues with intact cell membranes are not colored. Since cells are very selective in the compounds that pass through the membrane, in a viable cell trypan blue is not absorbed; however, it traverses the membrane in a dead cell. Hence, dead cells are shown as a distinctive blue color under a microscope. Since live cells are excluded from staining, this staining method is also described as a dye exclusion method. This dye may be a cause of certain birth defects such as encephalocele. Trypan blue is commonly used in microscopy (for cell counting) and in laboratory mice for assessment of tissue viability. The method cannot distinguish between necrotic and apoptotic cells. Trypan blue is also used in ophthalmic cataract surgery to stain the anterior capsule in the presence of a mature cataract, to aid in visualization, before creating the continuous curvilinear capsulorhexis.
Status:
First approved in 1981

Class (Stereo):
CHEMICAL (ACHIRAL)


Isosulfan Blue is a synthetic visual lymphatic imaging agent. Injected into the periphery of the tumor site, isosulfan blue localizes to the lymphatic system and aids in the surgical identification of tumor sentinel nodes which stain blue. The chemical name of isosulfan blue is N-[4-[[4-(diethylamino)phenyl] (2,5-disulfophenyl) methylene]-2,5-cyclohexadien-1-ylidene]-N-ethylethanaminium hydroxide, inner salt, sodium salt. Isosulfan blue is a greenish blue color hygroscopic powder. Isosulfan blue injection 1% is a contrast agent for the delineation of lymphatic vessels. Isosulfan blue injection 1% upon subcutaneous administration, delineates lymphatic vessels draining the region of injection. It is an adjunct to lymphography in: primary and secondary lymphedema of the extremities; chyluria, chylous ascites or chylothorax; lymph node involvement by primary or secondary neoplasm; and lymph node response to therapeutic modalities.

Class (Stereo):
CHEMICAL (ACHIRAL)


Indigotindisulfonic acid (also known as Indigo carmine) is a synthetic dye discovered in 18th century. It is used in many countiries as a food colorant and a pH indicator. In medicine the dye is used to localize ureteral orifices during cystoscopy and ureteral catheterization. In June 2014 the FDA announced the shortage of indigotindisulfonic acid.
Methylene blue, also known as methylthioninium chloride, is a medication from WHO's list of essential medicines. Upon administration, methylene blue is converted to leukomethylene blue by erythrocyte methemoblobin reductase in the presence of NADPH. Leukomethylene blue than reduces methemoglobin to oxyhemoglobin, thus restoring oxygen carrying capacity of the blood. Methylene blue is also used as a dye for various diagnostic procedures, for treatment of ifosfamide toxicity and for in vitro staining. Historically, it was used as a photosensitizer for photodynamic therapy for topical treatment of dermatologic or mucocutaneous infections, as an antidote for cyanide poisoning, but these applications are no longer approved. Methylene blue is investigated in clinical trials for treatment of septic shock and Alzheimer's disease.
Status:
First marketed in 0652
Source:
alcohol
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Alcohols exhibit rapid broad-spectrum antimicrobial activity against vegetative bacteria (including mycobacteria), viruses, and fungi but are not sporicidal. They are, however, known to inhibit sporulation and spore germination, but this effect is reversible. Because of the lack of sporicidal activity, alcohols are not recommended for sterilization but are widely used for both hard-surface disinfection and skin antisepsis. Lower concentrations may also be used as preservatives and to potentiate the activity of other biocides. Many alcohol products include low levels of other biocides (in particular chlorhexidine), which remain on the skin following evaporation of the alcohol, or excipients (including emollients), which decrease the evaporation time of the alcohol and can significantly increase product efficacy. Ethanol in combination with: chlorhexidine gluconate 1% was approved to use in surgical hand antiseptic. It significantly reduces the number of microorganisms on the hands and forearms prior to surgery or patient care. Ethanol is also used as a co-solvent to dissolve many insoluble drugs and to serve as a mild sedative in some medicinal formulations. Ethanol is metabolized by the hepatic enzyme alcohol dehydrogenase. Ethanol affects the brain’s neurons in several ways. It alters their membranes as well as their ion channels, enzymes, and receptors. Alcohol also binds directly to the receptors for acetylcholine, serotonin, GABA, and the NMDA receptors for glutamate. The sedative effects of ethanol are mediated through binding to GABA receptors and glycine receptors (alpha 1 and alpha 2 subunits). It also inhibits NMDA receptor functioning. In its role as an anti-infective, ethanol acts as an osmolyte or dehydrating agent that disrupts the osmotic balance across cell membranes.
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
Investigational
Source:
INN:rizedisben [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)