U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 71 - 80 of 2002 results

Status:
First approved in 1948
Source:
Pamisyl by Parke-Davis
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



4-AMINOSALICYLIC ACID (Paser) is an anti-tuberculosis drug used to treat tuberculosis in combination with other active agents. 4-AMINOSALICYLIC ACID (Paser) is most commonly used in patients with Multi-drug Resistant TB (MDR-TB) or when isoniazid and rifampin use is not possible due to a combination of resistance and/or intolerance. There are two mechanisms responsible for aminosalicylic acid's bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in the folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slow. Secondly, the aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis.
Ascorbic acid (vitamin C) is a water-soluble vitamin. It occurs as a white or slightly yellow crystal or powder with a slight acidic taste. Ascorbic acid is an electron donor, and this property accounts for all its known functions. As an electron donor, ascorbic acid is a potent water-soluble antioxidant in humans. Ascorbic acid acts as an antioxidant under physiologic conditions exhibiting a cross over role as a pro-oxidant in pathological conditions. Oxidized ascorbic acid (dehydroascorbic acid (DHA) directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas ascorbic acid did not have this effect. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling. Vitamin C is recommended for the prevention and treatment of scurvy. Its parenteral administration is desirable for patients with an acute deficiency or for those whose absorption of orally ingested ascorbic acid (vitamin c) is uncertain. Symptoms of mild deficiency may include faulty bone and tooth development, gingivitis, bleeding gums, and loosened teeth. Febrile states, chronic illness, and infection (pneumonia, whooping cough, tuberculosis, diphtheria, sinusitis, rheumatic fever, etc.) increase the need for ascorbic acid (vitamin c). Hemovascular disorders, burns, delayed fracture and wound healing are indications for an increase in the daily intake.
Status:
First approved in 1946

Class (Stereo):
CHEMICAL (ABSOLUTE)



Folic Acid is a B complex vitamin containing a pteridine moiety linked by a methylene bridge to para-aminobenzoic acid, which is joined by a peptide linkage to glutamic acid. Conjugates of Folic Acid are present in a wide variety of foods, particularly liver, kidneys, yeast and leafy green vegetables. Commercially available Folic Acid is prepared synthetically. Folic Acid occurs as a yellow or yellowish-orange crystalline powder and is very slightly soluble in water and insoluble in alcohol. Aqueous solutions of Folic Acid are heat sensitive and rapidly decompose in the presence of light and/or riboflavin; solutions should be stored in a cool place protected from light. Folic Acid is effective in the treatment of megaloblastic anemias due to a deficiency of Folic Acid (as may be seen in tropical or nontropical sprue) and in anemia of nutritional origin, pregnancy, infancy, or childhood. Folic Acid is relatively nontoxic in man. Rare instances of allergic responses to Folic Acid preparations have been reported and have included erythema, skin rash, itching, general malaise, and respiratory difficulty due to bronchospasm. Endocyte is developing an intravenous (IV) formulation of folic acid, called Neocepri®, which is intended for the diagnosis of positive folate receptor-positive status in patients with ovarian cancer when administered prior to the radioactive medicine, technetium Tc99m Etarfolatide. The benefits of Neocepri® are its ability to reduce the background activity observed on single photon emission computed tomography (SPECT) imaging in most normal, nontarget tissues (e.g. intestines, liver, kidney, spleen), thereby improving the image quality of the scans. The product had been granted orphan drug designation in the EU. Endocyte had filed a conditional marketing authorization application (CMA) with the European Medicines Agency (EMA) for Neocepri®.
Dimethyl maleate is an organic compound, the (Z)-isomer of the dimethyl ester of fumaric acid. Dimethyl maleate can be synthesized from maleic anhydride and methanol, with sulfuric acid acting as acid catalyst, via a nucleophilic acyl substitution for the monomethyl ester, followed by a Fischer esterification reaction for the dimethyl ester. Dimethyl maleate is used in many organic syntheses as a dienophile for diene synthesis. It is used as an additive and intermediate for plastics, pigments, pharmaceuticals, and agricultural products. It is also an intermediate for the production of paints, adhesives, and copolymers.
Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. As a bile acid, deoxycholic acid emulsifies fat in the gut. Synthetically derived deoxycholic acid, when injected, stimulates a targeted breakdown of adipose cells by disrupting the cell membrane and causing adipocytolysis. This results in an inflammatory reaction and clearing of the adipose tissue remnants by macrophages. Deoxycholic acid's actions are reduced by albumin and tissue-associated proteins, therefore its effect is limited to protein-poor subcutaneous fat tissue. Protein-rich tissues like muscle and skin are unaffected by deoxycholic acid, contributing to its safety profile. Deoxycholic acid is a cytolytic agent. The physiologic effect of deoxycholic acid is by means of decreased cell membrane integrity. Deoxycholic acid inhibits miR-21 expression in primary rat hepatocytes in a dose-dependent manner, and increases miR-21 pro-apoptotic target programmed cell death 4 (PDCD4) and apoptosis. Deoxycholic acid decreases NF-κB activity, shown to represent an upstream mechanism leading to modulation of the miR-21/PDCD4 pathway.
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Status:
First marketed in 1921
Source:
Potassium Sulphate N.F.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

SULFATE (as sodium sulfate, potassium sulfate, and magnesium sulfate) is a component of SUPREP Bowel Prep Kit. It is an osmotic laxative indicated for cleansing of the colon in preparation for colonoscopy in adults. Sulfate salts provide sulfate anions, which are poorly absorbed. The osmotic effect of unabsorbed sulfate anions and the associated cations causes water to be retained within the gastrointestinal tract. SUPREP Bowel Prep Kit, when ingested with a large volume of water, produces copious watery diarrhea.
Status:
First marketed in 1921
Source:
Lactic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
First marketed in 1921
Source:
Benzoic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Benzoic acid is a natural ingredient occurring in many foodstuffs and in plant extracts. Benzoic acid, its salts and esters are used as preservatives in cosmetic products, with a maximum concentration of 0.5 %. Benzoic acid and sodium benzoate are on the FDA list of substances that are generally recognized as safe (GRAS). Both may be used as antimicrobial agents, flavouring agents and as adjuvants with a current maximum level of 0.1% in food. Benzoic acid is a constituent of Whitfield Ointment, which is used for the treatment of fungal skin diseases such as tinea, ringworm, and athlete's foot. Adverse effect of Whitfield Ointment: occasionally, a localized mild inflammatory response occurs.
Status:
US Approved OTC
Source:
21 CFR 346.20(a) anorectal:keratolytic alcloxa
Source URL:
First approved in 1961
Source:
ALLANTOMIDE ALLANTOIN by NATIONAL DRUG
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Aldioxa is the generic name for the metal complex, dihydroxyaluminum allantoinate, which is hydrolyzed to allantoin and aluminium hydrate at the gastric mucosa. Aldioxa was approved in Japan to improve subjective symptoms or objective of gastric/duodenal ulcer and gastritis. It was discovered, that aldioxa ameliorates delayed gastric emptying through its antagonistic activity on the α-2 adrenergic receptor. The most commonly reported adverse reactions include constipation.