U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 105 results

Status:
US Previously Marketed
Source:
Stearic Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Stearic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Stearic Acid is a typical example of a fatty acid, which are essentially long hydrocarbon chains containing a carboxyl group at one end and a methyl group at the other. The chain lengths can vary from 3 (propionic acid) to 24 (lignoceric acid) but the majority of fatty acids found in hydrogenated vegetable or animal oils are around C16-C20 in length. Stearic acid is a saturated acid, since there are no double bonds between neighbouring carbon atoms. Stearic acid is found in various animal and plant fats, and is a major component of cocoa butter and shea butter. Stearic acid is a very common amino acid is used in the manufacturing of more than 3,200 skin and hair care products sold in the United States. On product labels, it is sometimes listed under other names, including Century 1240, cetylacetic acid, Emersol 120, Emersol 132, Emersol 150, Formula 300 and Glycon DP. Stearic Acid is mainly used in the production of detergents, soaps, and cosmetics such as shampoos and shaving cream products. Stearic acid is used along with castor oil for preparing softeners in textile sizing. Being inexpensively available and chemically benign, stearic acid finds many niche applications It is used in the manufacture of candles, and as a hardener in candies when mixed with simple sugar and corn syrup. It is also used to produce dietary supplements. In fireworks, stearic acid is often used to coat metal powders such as aluminum and iron. This prevents oxidation, allowing compositions to be stored for a longer period of time. Stearic acid is a common lubricant during injection molding and pressing of ceramic powders. It is also used as a mold release for foam latex that is baked in stone molds. Stearic acid is known antidiabetic and antioxidant agent.
Status:
US Previously Marketed
First marketed in 1921
Source:
sodium succinate
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Succinic acid is a dicarboxylic acid, which has multiple biological roles as a metabolic intermediate being converted into fumarate by the enzyme succinate dehydrogenase in complex 2 of the electron transport chain which is involved in making ATP, and as a signaling molecule reflecting the cellular metabolic state. Succinate is generated in mitochondria via the tricarboxylic acid cycle (TCA), an energy-yielding process shared by all organisms. Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space, changing gene expression patterns, modulating epigenetic landscape or demonstrating hormone-like signaling. Dysregulation of succinate synthesis, and therefore ATP synthesis, happens in some genetic mitochondrial diseases, such as Leigh's disease, and Mela's disease and degradation can lead to pathological conditions, such as malignant transformation, inflammation and tissue injury. Succinic acid is a precursor to some polyesters and a component of some alkyd resins. Succinic acid also serves as the bases of certain biodegradable polymers, which are of interest in tissue engineering applications. As a food additive and dietary supplement, succinic acid is generally recognized as safe by the U.S. Food and Drug Administration. Succinic acid is used primarily as an acidity regulator in the food and beverage industry. It is also available as a flavoring agent, contributing a somewhat sour and astringent component to umami taste.[11] As an excipient in pharmaceutical products, it is also used to control acidity or as a counter ion. Drugs involving succinate include metoprolol succinate, sumatriptan succinate, Doxylamine succinate or solifenacin succinate.
Status:
US Previously Marketed
Source:
NYLMERATE BORIC ACID by HOLLAND-RANTDS
(1961)
Source URL:
First marketed in 1921
Source:
Boric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

AMMONIUM BORATE is used in fireproofing wood and textiles, and also in electrolytic condensers. It can be indirect additive used in food contact substances.
Status:
US Previously Marketed
Source:
sodium propionate
(1921)
Source URL:
First marketed in 1921
Source:
sodium propionate
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Propionic acid (PA), also known as propanoic acid, with chemical formula C3H6O2, is an organic acid used as a food additive and found naturally on the skin and in the gastrointestinal tract. It is a byproduct of fermentation reactions and is also produced industrially from ethylene or ethanol and carbon monoxide. Propionic acid is a fungicide and bactericide, registered to controlfungi and bacteria in stored grains, hay, grain storage areas, poultry litter,and drinking water for livestock and poultry. As a food preservative, propionic acid prevents mold in bread and baked goods, and it is used as a flavoring agent in cheese and other packaged goods. The U.S. Environmental Protection Agency considers it safe and therefore, has no limitation on its use. It has been demonstrated that PA lowers fatty acids content in liver and plasma, reduces food intake, exerts immunosuppressive actions and probably improves tissue insulin sensitivity. Thus increased production of PA by the microbiota might be considered beneficial in the context of prevention of obesity and diabetes type 2. The molecular mechanisms by which PA may exert this plethora of physiological effects are slowly being elucidated and include intestinal cyclooxygenase enzyme, the G-protein coupled receptors 41 and 43 and activation of the peroxisome proliferator-activated receptor γ, in turn inhibiting the sentinel transcription factor NF-κB and thus increasing the threshold for inflammatory responses in general. Taken together, PA emerges as a major mediator in the link between nutrition, gut microbiota and physiology. The sodium salt of propionic acid was previously approved in Canada as an active ingredient in Amino-Cerv (used to treat inflammation or injury of the cervix).
Gallic acid is a polyphenol found in a variety of foods and herbs. Several studies have shown thta gallic acid has neuroprotective and anti-oxidant properties and can be a promising candidate for the treatment of cancer, cardiovascular diseases, neurodegenerative disorders, fatty liver disease and many others. Gallic acid acts by protecting cells against oxidative damage caused by reactive species often encountered in biological systems including, hydroxyl, superoxide and peroxyl and the non-radicals, hydrogen peroxide and hypochlorous acid. However, its ability to induce apoptosis, is mainly associated with its prooxidant, rather than antioxidant behavior.
Glycyrrhizic Acid is specific compound isolated from licorice plants. Ammonium Glycyrrhizate (also known as GLYCYRRHIZIN, AMMONIATED) is a salt, was investigated to be a safe and is used as ingredient in the formulation of makeup, fragrance, hair care, skin care, shaving, personal hygiene and suntan products.
Status:
US Previously Marketed
Source:
Formic Acid N.F.
(1921)
Source URL:
First marketed in 1921
Source:
Formic Acid N.F.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Formic acid is the simplest carboxylic acid. In nature, formic acid is found in the stings and bites of many insects of the order Hymenoptera, including bees and ants. The principal use of formic acid is as a preservative and antibacterial agent in livestock feed. When sprayed on fresh hay or other silage, it arrests certain decay processes and causes the feed to retain its nutritive value longer. In medicine 85% formic acid application is a safe, economical, and effective alternative in the treatment of common warts with few side-effects and good compliance.
Status:
US Previously Marketed
First marketed in 1912

Class (Stereo):
CHEMICAL (ACHIRAL)



Ellagic acid is a dilactone of hexahydroxydiphenic acid, that found in numerous fruits and vegetables. Ellagic acid was first discovered by chemist Henri Braconnot in 1831. Ellagic acid is found in oaks species like the North American white oak (Quercus alba) and European red oak (Quercus robur). The highest levels of ellagic acid are found in walnuts, pecans, cranberries, raspberries, strawberries, and grapes, as well as distilled beverages. It is also found in peach, and other plant foods. Ellagic acid has antiproliferative and antioxidant properties in a number of in vitro and small-animal models. The antiproliferative properties of ellagic acid may be due to its ability to directly inhibit the DNA binding of certain carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons. As with other polyphenol antioxidants, ellagic acid has a chemoprotective effect in cellular models by reducing oxidative stress. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acid has been marketed as a dietary supplement with a range of claimed benefits against cancer, heart disease, and other medical problems. Ellagic acid has been identified by the U.S. Food and Drug Administration as a "fake cancer 'cure' consumers should avoid".
Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. Rosmarinic Acid seems to be able to suppress 5-lipoxygenase and 5-HETE synthesis (a pro-inflammatory compound in the omega-6 metabolic chain). Rosmarinic acid appeared to be effective in suppressing allergies in a dose-dependent manner, with 30% of the placebo group reporting symptom relief compared to 55.6% of the 50mg group and 70% of the 200mg group.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (RACEMIC)



Fulvic acid is primarily studied for its effects on plants and soil. Fulvic acid is an organic and natural electrolyte. Depending on the situation, Fulvic acid can act as an electron donor or acceptor and an oxidizer or reducer. Fulvic acid has exhibited the ability to enhance the availability and adsorption of nutrients as well as prolong their time of residence. In the chick animal model Fulvic acid disturbed the processing of procollagen II in articular cartilage. Fulvic acid has being shown to attenuate homocysteine-induced cyclooxygenase-2 expression in human monocytes. Fulvic acid, the main active principle of Shilajit (a natural substance found mainly in the Himalayas), blocks tau self-aggregation, opening an avenue toward the study of Alzheimer's therapy. People take fulvic acid by mouth for brain disorders such as Alzheimer’s disease, as well as respiratory tract infections, cancer, fatigue, heavy metal toxicity, and preventing a condition in which the body tissues do not receive enough oxygen (hypoxia).