U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 91 - 100 of 104 results

mixture
Status:
Investigational
Source:
NCT01781559: Not Applicable Interventional Completed Endothelial Dysfunction
(2012)
Source URL:

Class:
MIXTURE

Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(20) weight control alginic acid
Source URL:

Class:
POLYMER

Status:
Possibly Marketed Outside US
Source:
Elcosys by DS TECH CO., LTD
Source URL:

Class:
POLYMER



Hyaluronic acid (HA) is a high molecular weight biopolysacharide, discovered in 1934, by Karl Meyer and his assistant, John Palmer in the vitreous of bovine eyes. Hyaluronic acid is a naturally occurring biopolymer, which has important biological functions in bacteria and higher animals including humans. It is found in most connective tissues and is particularly concentrated in synovial fluid, the vitreous fluid of the eye, umbilical cords and chicken combs. It is naturally synthesized by a class of integral membrane proteins called hyaluronan synthases, and degraded by a family of enzymes called hyaluronidases. Hyaluronan synthase enzymes synthesize large, linear polymers of the repeating disaccharide structure of hyaluronan by alternating addition of glucuronic acid and N-acetylglucosamine to the growing chain using their activated nucle¬otide sugars (UDP – glucuronic acid and UDP-N-acetlyglucosamine) as substrates. The number of repeat disaccharides in a completed hyaluronan molecule can reach 10 000 or more, a molecular mass of ~4 million daltons (each disaccharide is ~400 daltons). The average length of a disaccharide is ~1 nm. Thus, a hyaluronan molecule of 10 000 repeats could ex¬tend 10 μm if stretched from end to end, a length approximately equal to the diameter of a human erythrocyte. Although the predominant mechanism of HA is unknown, in vivo, in vitro, and clinical studies demonstrate various physiological effects of exogenous HA. Hyaluronic acid possesses a number of protective physiochemical functions that may provide some additional chondroprotective effects in vivo and may explain its longer term effects on articular cartilage. Hyaluronic acid can reduce nerve impulses and nerve sensitivity associated with pain. In experimental osteoarthritis, this glycosaminoglycan has protective effects on cartilage. Exogenous HA enhances chondrocyte HA and proteoglycan synthesis, reduces the production and activity of proinflammatory mediators and matrix metalloproteinases, and alters the behavior of immune cells. In addition to its function as a passive structural molecule, hyaluronan also acts as a signaling molecule by interacting with cell surface receptors and regulating cell proliferation, migration, and differentiation. Hyaluronan is essential for embryogenesis and is likely also important in tumorigenesis. HA plays several important organizational roles in the extracellular matrix (ECM) by binding with cells and other components through specific and nonspecific interactions. Hyaluronan-binding pro¬teins are constituents of the extracellular matrix, and stabilize its integrity. Hyaluronan receptors are involved in cellular signal transduction; one receptor family includes the binding proteins aggrecan, link protein, versican and neurocan and the receptors CD44, TSG6, GHAP and LYVE-1. The chondroprotective effects of hyaluronic acid, e.g., that it stimulates the production of tissue in¬hibitors of matrix metalloproteineses (TIMP-1) by chondrocytes, inhibits neutrophil-mediated cartilage degradation and attenuates IL-1 induced matrix de¬generation and chondrocyte cytotoxicity have been observed in vitro. Articular chondrocytes cultured in the presence of HA have a significantly greater rate of DNA proliferation and ex¬tracellular matrix production, compared with chon¬drocytes cultured without HA.
structurally diverse
Status:
Other

Class:
STRUCTURALLY DIVERSE

Zoledronic acid (Reclast, Aclasta, Zometa) is an intravenous, highly potent amino-bisphosphonate approved worldwide, including in the USA, EU and Japan for use in patients with primary or secondary osteoporosis or low bone mass (approved indications vary between countries). Its high affinity to and long half-life in bone, and long duration of action allow for once-yearly administration, which has the potential to improve adherence to therapy. Zoledronic acid once yearly for up to 3 years improved bone mineral density (BMD) at several skeletal sites, reduced fracture risk and bone turnover, and/or preserved bone structure and mass relative to placebo in clinical studies in patients with primary or secondary osteoporosis. While additional benefits were seen when treatment was continued for up to 6 years, as evidenced by a reduced risk of vertebral fractures and higher BMD relative to 3 years’ therapy, there was the minimal advantage of treatment beyond 6 years. Therefore, in patients with low fracture risk, treatment discontinuation should be considered after approximately 5 years’ therapy. Zoledronic acid administered annually or once in 2 years was also effective in preventing bone loss in patients with low bone mass. Zoledronic acid was generally well tolerated, with the most common adverse events (AEs) being transient, mild-to-moderate post-infusion symptoms, which decreased with subsequent infusions.
Phosphoric acid, also known as orthophosphoric acid, is used in dentistry and orthodontics to clean and roughen the surfaces of teeth where dental appliances or fillings will be placed. In addition, this acid is a part of product ProcalAmine, which is indicated for peripheral administration in adults to preserve body protein and improve nitrogen balance in well-nourished, mildly catabolic patients who require short-term parenteral nutrition. In combination with dextrose (glucose) and levulose (fructose), phosphoric acid relieves nausea due to upset stomach from intestinal flu, stomach flu, and food or drink indiscretions. In addition, homeopathic product, Brain power contains also phosphoric acid and this product is used to temporarily relieve symptoms of general physical weakness and listlessness, including: fatigue; sore muscles & joints; dry skin; absence of sexual desire; occasional sleeplessness.
Status:
First marketed in 1921
Source:
Sodium Chloride U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Hydroxocobalamin (also hydroxycobalamin, OHCbl) is a natural form, or vitamer, of vitamin B12. It is a member of the cobalamin family of compounds. Hydroxocobalamin, the active ingredient in Cyanokit, is cobinamide dihydroxide dihydrogen phosphate (ester), mono (inner salt), 3’-ester with 5,6-dimethyl-1-α-D-ribofuranosyl-1H-benzimidazole. The drug substance is the hydroxylated active form of vitamin B12 and is a large molecule in which a trivalent cobalt ion is coordinated in four positions by a tetrapyrol (or corrin) ring. It is a hygroscopic, odorless, dark red, crystalline powder that is freely soluble in water and ethanol, and practically insoluble in acetone and diethyl ether. Cyanokit contains hydroxocobalamin, an antidote indicated for the treatment of known or suspected cyanide poisoning. Cyanide is an extremely toxic poison. In the absence of rapid and adequate treatment, exposure to a high dose of cyanide can result in death within minutes due to the inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, cyanide binds rapidly with cytochrome a3, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a3 prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. In massive acute cyanide poisoning, the mechanism of toxicity may involve other enzyme systems as well. Signs and symptoms of acute systemic cyanide poisoning may develop rapidly within minutes, depending on the route and extent of cyanide exposure. The action of Cyanokit is based on its ability to bind cyanide ions. Each hydroxocobalamin molecule can bind one cyanide ion by substituting it for the hydroxo ligand linked to the trivalent cobalt ion, to form cyanocobalamin, which is then excreted in the urine.
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.
Status:
Investigational
Source:
NCT00942656: Not Applicable Interventional Completed Cardiovascular Disease
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Vaccenic acid (VA) (t11 octadecenoic acid) is a positional and geometric isomer of oleic acid (c9-octadecenoic acid), and is the predominant trans monoene in ruminant fats (50%–80% of total trans content). Dietary VA can be desaturated to cis-9,trans-11 conjugated linoleic acid (c9,t11-CLA) in ruminants, rodents, and humans. Hydrogenated plant oils are another source of VA in the diet, and it has been recently estimated that this source may contribute to about 13%–17% of total VA intake. In contrast to suggestions from the epidemiological studies, the majority of studies using cancer cell lines (Awad et al. 1995; Miller et al. 2003) or rodent tumors (Banni et al. 2001; Corl et al. 2003; Ip et al. 1999; Sauer et al. 2004) have demonstrated that VA reduces cell growth and (or) tumor metabolism. Animal and in vitro studies suggest that the anti-cancer properties of VA are due, in part, to the in vivo conversion of VA to c9,t11-CLA. However, several additional mechanisms for the anti-cancer effects of VA have been proposed, including changes in phosphatidylinositol hydrolysis, reduced proliferation, increased apoptosis, and inhibition of fatty acid uptake. In conclusion, although the epidemiological evidence of VA intake and cancer risk suggests a positive relationship, this is not supported by the few animal studies that have been performed. The majority of the studies suggest that any health benefit of VA may be conferred by in vivo mammalian conversion of VA to c9,t11-CLA. VA acts as a partial agonist to both peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ in vitro, with similar affinity compared to commonly known PPAR agonists. Hypolipidemic and antihypertrophic bioactivity of VA is potentially mediated via PPAR-/-dependent pathways.

Showing 91 - 100 of 104 results