U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 361 - 370 of 13408 results

Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Ephedrine (l-form) is an alkaloid, which was initially purified from Ephedra plant. The extract form Ephedra has been used in China for medicinal purposes for several thousand years. Ephedrine acts as an agonist at alpha- and beta-adrenergic receptors and indirectly causes the release of norepinephrine from sympathetic neurons. The drug crosses the blood brain barrier and stimulates the central nervous system. Ephedrine products are now banned in many countries, as they are a major source for the production of the addictive compound methamphetamine. FDA has approved ephedrine only for the treatment of clinically important hypotension occurring in the setting of anesthesia.
Zinc monocarbonate (Zinc Carbonate) is an inorganic salt. In the United States, Zinc Carbonate may be used as an active ingredient in OTC drug products. When used as an active drug ingredient, the established name is Zinc Carbonate. Zinc monocarbonate is generally recognized as safe by FDA. It is used as skin protectant active ingredient. Zinc carbonate was found to retard the degradation of some poly(lactide-co-glycolide) (PLG) microspheres in vivo and in vitro. Adding Zinc Carbonate is essential during the preparation of PLGA microspheres. It can remarkably improve the stability of drugs in the acid microenvironment inside PLGA microspheres.
Menthol, (+)- is a fragrance ingredient used in decorative cosmetics, fine fragrances, shampoos, toilet soaps and other toiletries as well as in non-cosmetic products such as household cleaners and detergents. Recent investigations have provided evidence for menthol to increase cough thresholds. Racementhol is used as a topical analgesic.
Status:
Investigational
Source:
NCT03631394: Not Applicable Interventional Completed Exercise
(2018)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Betanin (betanidin-5-O-beta-glucoside, Beetroot Red) is a red glycosidic food dye obtained from beets. Betanin is the most common betacyanin in the plant kingdom. According to the regulation on food additives betanin is permitted quantum satis as a natural red food colorant (E162). Moreover, betanin is used as colorant in cosmetics and pharmaceuticals. Recently, potential health benefits of betalains and betalain-rich foods (e.g. red beet, Opuntia sp.) have been discussed. Betanin is a scavenger of reactive oxygen species and exhibits gene-regulatory activity partly via nuclear factor (erythroid-derived 2)-like 2-(Nrf2) dependent signaling pathways. Betanin may induce phase II enzymes and antioxidant defense mechanisms. Furthermore, betanin possibly prevents LDL oxidation and DNA damage. Potential blood pressure lowering effects of red beet seem to be mainly mediated by dietary nitrate rather than by betanin per se.
Status:
Investigational
Source:
USAN:ORBOFIBAN ACETATE [USAN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:roxifiban
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Roxifiban (also known as DMP754), a potent antiplatelet agent in inhibiting platelet aggregation, and has a high specificity and affinity for human platelet glycoprotein IIb/IIIa complex (GPIIb/IIIa) receptors. Roxifiban participated in clinical trials phase III for the treatment of peripheral arterial disorders. This drug was also well tolerated in patients with chronic stable angina pectoris and was studied in the treatment of heparin-induced thrombocytopenia, and thrombosis. However, the development of this drug appears to have been discontinued.
Status:
Investigational
Source:
INN:carafiban
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Carafiban is orally active heterocyclic peptide mimetics fibrinogen IIb/IIIa receptor antagonist with antithrombotic activity. Carafiban is a prodrug, that underwent metabolic transformation to active metabolite des-ethyl- Carafiban, that inhibited dose-dependently and reversibly human platelet aggregation. In conscious dogs, Carafiban showed a high plasma availability of the active moiety of 42±8% and a plasma half-life of 9.9 h after oral administration as measured by bioassay. Carafiban may potentially be used for chronic treatment and prophylaxis of thrombotic diseases in humans.
Status:
Investigational
Source:
INN:sibrafiban
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Sibrafiban (G-7453) is the orally administered, nonpeptide, double-prodrug of Ro 44-3888 which is a selective glycoprotein IIb/IIIa receptor antagonist. Sibrafiban is a double prodrug that undergoes bioconversion to the inactive prodrug Ro 48-3656 and to the active IIb/IIIa antagonist, Ro 44-3888, after oral administration. Sibrafiban was undergoing clinical trials for secondary prevention of cardiac events in patients stabilised after acute coronary syndromes. Sibrafiban has been shown to have comparable efficacy to aspirin in preventing recurrent ischemic events in patients suffering from acute coronary syndromes. Sibrafiban was under development by Genentech and Hoffmann-La Roche, and in phase III trials as an antithrombotic. The development of sibrafiban was discontinued in 1999 following unfavorable Phase III efficacy data.