{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "JECFA" in comments (approximate match)
Status:
US Previously Marketed
Source:
Exsiccated Sodium Sulphite U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Exsiccated Sodium Sulphite U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfites are compounds that contain the sulfite ion. The sulfite ion is the conjugate base of bisulfite. Although its acid is elusive, its salts are widely used. Sulfite is used in the photography industry to protect developing solutions from oxidation, in the pulp and paper industry, in water treatment as an oxygen scavenger agent, as a desulfurizing and dechlorinating agent in the leather industry and as a bleaching agent in textile industry. Sodium sulfite is a component in many pharmaceuticals, which is effective to maintain the potency and stability of drugs. It is added to a number of drug preparations as an antioxidant and antimicrobial agent. Sulfite is used as a food preservative. Topical, oral or parenteral exposure to sulphites has been reported to induce a range of adverse clinical effects in sensitive individuals, ranging from dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhoea to life-threatening anaphylactic and asthmatic reactions. Exposure to the sulphites arises mainly from the consumption of foods and drinks that contain these additives; however, exposure may also occur through the use of pharmaceutical products, as well as in occupational settings. Sulfite is accepted for use as a food additive in Europe. Sodium sulfite is generally recognized as safe by FDA. It is included in FDA Inactive Ingredients Database (epidural, IM, IV, and SC injections; inhalation solution; ophthalmic solutions; oral syrups and suspensions; otic solutions; topical creams and emulsions). Included in nonparenteral medicines licensed in the UK.
Status:
US Previously Marketed
Source:
Benzosulphinide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Benzosulphinide U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Saccharin is the most established of the artificial sweeteners on the market, this mixture of dextrose and saccharin has been in use for over a century and is found in diet versions of soft drinks. It is 300-500 times sweeter than sugar and contains zero calories. In 1977, the FDA tried to ban its use after evidence showed it caused cancer in rats. Extensive lobbying by the diet food industry allowed products to stay on the shelves as long as they carried warnings about the cancer risks in animals. This warning was removed in 2001 when the Calorie Control Council insisted the link between animal and human cancers could not automatically be made. Consumption of saccharin-sweetened products can benefit diabetics as the substance goes directly through the human digestive system without being digested. While saccharin has no food energy, it can trigger the release of insulin in humans due to its sweet taste. The T1R2/R3 sweet taste receptor exist on the surface of pancreatic beta cells. Saccharin is a unique in that it inhibits glucose-stimulated insulin secretion (GSIS) at submaximal and maximal glucose concentrations, with the other sweeteners having no effect. Investigation of saccharin’s dose-response characteristics showed that concentrations of 0.1 and 0.5 mM stimulated insulin secretion, while concentrations of 1 and 2.5 mM inhibited insulin secretion. Saccharin’s effect on insulin secretion was shown to be reversible in INS-1 832/13 clonal pancreatic beta cells after chronic exposure to 1 mM saccharin. Artificial sweeteners may affect insulin secretion via interaction with the sweet taste receptor, also saccharin may affect other cellular processes linked to insulin secretion, and that these effects are both time- and concentration-dependent
Status:
US Previously Marketed
Source:
Hydrochloric Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Hydrochloric Acid U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
HYDROCHLORIC ACID is formed by dissolving hydrogen chloride gas in water. It is a strong corrosive acid that is commonly used as a laboratory reagent. Also, it constitutes the majority of gastric acid, the human digestive fluid. Skin contact with HYDROCHLORIC ACID can cause redness, pain, and severe skin burns. It may cause severe burns to the eye and permanent eye damage.
Status:
US Previously Marketed
Source:
Nitric Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitrate ion (NO3 −) is found naturally in the environment and is an important plant nutrient. It is present at varying concentrations in all plants and is a part of the nitrogen cycle. Nitrate probably has a role in protecting the gastrointestinal tract against a variety of gastrointestinal pathogens, as nitrous oxide and acidified nitrite have antibacterial properties. Significant bacterial reduction of nitrate to nitrite does not normally take place in the stomach, except in individuals with low gastric acidity or with gastrointestinal infections. These may include individuals using antacids, particularly those that block acid secretion. Potassium nitrate is used as mild local desensitizer in toothpastes.
Status:
US Previously Marketed
Source:
Nitric Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitrate ion (NO3 −) is found naturally in the environment and is an important plant nutrient. It is present at varying concentrations in all plants and is a part of the nitrogen cycle. Nitrate probably has a role in protecting the gastrointestinal tract against a variety of gastrointestinal pathogens, as nitrous oxide and acidified nitrite have antibacterial properties. Significant bacterial reduction of nitrate to nitrite does not normally take place in the stomach, except in individuals with low gastric acidity or with gastrointestinal infections. These may include individuals using antacids, particularly those that block acid secretion. Potassium nitrate is used as mild local desensitizer in toothpastes.
Status:
US Previously Marketed
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Previously Marketed
Source:
Stearic Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Stearic Acid is a typical example of a fatty acid, which are essentially long hydrocarbon chains containing a carboxyl group at one end and a methyl group at the other. The chain lengths can vary from 3 (propionic acid) to 24 (lignoceric acid) but the majority of fatty acids found in hydrogenated vegetable or animal oils are around C16-C20 in length. Stearic acid is a saturated acid, since there are no double bonds between neighbouring carbon atoms. Stearic acid is found in various animal and plant fats, and is a major component of cocoa butter and shea butter. Stearic acid is a very common amino acid is used in the manufacturing of more than 3,200 skin and hair care products sold in the United States. On product labels, it is sometimes listed under other names, including Century 1240, cetylacetic acid, Emersol 120, Emersol 132, Emersol 150, Formula 300 and Glycon DP. Stearic Acid is mainly used in the production of detergents, soaps, and cosmetics such as shampoos and shaving cream products. Stearic acid is used along with castor oil for preparing softeners in textile sizing. Being inexpensively available and chemically benign, stearic acid finds many niche applications It is used in the manufacture of candles, and as a hardener in candies when mixed with simple sugar and corn syrup. It is also used to produce dietary supplements. In fireworks, stearic acid is often used to coat metal powders such as aluminum and iron. This prevents oxidation, allowing compositions to be stored for a longer period of time.
Stearic acid is a common lubricant during injection molding and pressing of ceramic powders. It is also used as a mold release for foam latex that is baked in stone molds. Stearic acid is known antidiabetic and antioxidant agent.
Status:
US Previously Marketed
Source:
Oleic Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Oleic acid is an unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Oleic acid occurs naturally in various animal and vegetable fats and oils. It is a component of the normal human diet as a part of animal fats and vegetable oils. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil. Oleic acid has being shown to have a potential anticancer activity.
Status:
Possibly Marketed Outside US
Source:
M020
(2024)
Source URL:
First approved in 2024
Source:
M020
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
M001
(2019)
Source URL:
First approved in 2019
Source:
M001
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)