U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 614 results

Dyclonine is an local anesthetic used to provide topical anesthesia to mucous membranes through sodium channel inhibition. It is the active ingredient in Sucrets, an over-the-counter throat lozenge. It has been used as a local anesthetic agent prior to laryngoscopy, bronchoscopy, esophagoscopy, or endotracheal intubation. However, oral solutions no longer are commercially available in the US. Recently, additional activities of dyclonine have been discovered. Dyclonine represents a novel therapeutic strategy that can potentially be repurposed for the treatment of Friedreich's ataxia. Dyclonine enhances the cytotoxic effect of proteasome inhibitors on cancer and multiple myeloma cells.
Status:
US Approved OTC
Source:
21 CFR 332.10 antiflatulent simethicone
Source URL:
First approved in 1952
Source:
Mylicon by Stuart
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Silicon dioxide (silica) is most commonly found in nature as quartz, as well as in various living organisms. Silicon dioxide one of the most complex and most abundant families of materials, existing both as several minerals and being produced synthetically. In food and pharmaceutical industry silica is a common additive, where it is used primarily as a flow in powdered foods, or to adsorb water in hygroscopic application. In pharmaceutical products, silica aids powder flow when tablets are formed.
Status:
US Approved OTC
Source:
21 CFR 332.10 antiflatulent simethicone
Source URL:
First approved in 1952
Source:
Mylicon by Stuart
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Silicon dioxide (silica) is most commonly found in nature as quartz, as well as in various living organisms. Silicon dioxide one of the most complex and most abundant families of materials, existing both as several minerals and being produced synthetically. In food and pharmaceutical industry silica is a common additive, where it is used primarily as a flow in powdered foods, or to adsorb water in hygroscopic application. In pharmaceutical products, silica aids powder flow when tablets are formed.
Status:
US Approved OTC
Source:
21 CFR 332.10 antiflatulent simethicone
Source URL:
First approved in 1952
Source:
Mylicon by Stuart
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Silicon dioxide (silica) is most commonly found in nature as quartz, as well as in various living organisms. Silicon dioxide one of the most complex and most abundant families of materials, existing both as several minerals and being produced synthetically. In food and pharmaceutical industry silica is a common additive, where it is used primarily as a flow in powdered foods, or to adsorb water in hygroscopic application. In pharmaceutical products, silica aids powder flow when tablets are formed.
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
US Approved OTC
Source:
21 CFR 346.10(d) anorectal:local anesthetic dibucaine hydrochloride
Source URL:
First marketed in 1930
Source:
Dibucaine; Nupercaine by Society of Chemical Industry in Basle, Basle, Switzerland (Ciba Company, Inc., New York, distributor).
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Dibucaine is used as a local anesthetic for surface anesthesia. It is one of the most potent and toxic of the long-acting local anesthetics and its parenteral use is restricted to spinal anesthesia. Dibucaine is used to temporarily relieve pain and itching due to: hemorrhoids or other anorectal disorders, sunburn, minor burns, minor cuts; scrapes, insect bites, minor skin irritation. This drug acts via blocking of nerve impulses by decreasing the neuronal membrane's permeability to sodium ions through sodium channel blocking. This reversibly stabilizes the membrane and inhibits depolarization, resulting in the failure of a propagated action potential and subsequent conduction blockade.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(2)(ii) cough/cold:antitussive codeine phosphate
Source URL:
First marketed in 1921
Source:
Codeine Sulphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Codeine is an opiate used to manage mild to moderate pain severe enough to require an opioid. Codeine is a selective agonist for the mu opioid receptor and has an affinity to delta and kappa-opioid receptors. In some countries, this drug is regulated under various narcotic control laws, because its chronic use can cause physical dependence. In others, it is available without a medical prescription in combination with paracetamol.
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
US Approved OTC
Source:
21 CFR 346.16(a) anorectal:analgesic, anesthetic, antipruritic camphor
Source URL:
First marketed in 1921

Class (Stereo):
CHEMICAL (ABSOLUTE)



Camphor is a bicyclic monoterpene ketone found widely in plants, especially cinnamomum camphora. Topically, camphor is used to relieve pain. It has been used to treat warts, cold sores, hemorrhoids, and osteoarthritis. It has also been applied topically as an analgesic and an antipruritic. It has been used as a counterirritant, and to increase local blood flow. Camphor has frequently been used topically to treat respiratory tract diseases involving mucous membrane inflammation. It is sometimes used topically to treat cardiac symptoms. Camphor is also used topically as an eardrop, and for treating minor burns. In inhalation therapy, camphor is used as an antitussive. Orally, camphor is used as an expectorant, antiflatulent, and for treating respiratory tract diseases. Today, most camphor is synthetic. It is approved by the FDA as a topical antitussive. Camphor is produced synthetically from the oil of turpentine. It has been used for centuries for its medicinal features, in religious rituals, and in cooking. It is no longer used as pesticide. In 1982, the US Food and Drug Administration restricted commercial products intended for medicinal use to contain <11% camphor.
Menthol, (+)- is a fragrance ingredient used in decorative cosmetics, fine fragrances, shampoos, toilet soaps and other toiletries as well as in non-cosmetic products such as household cleaners and detergents. Recent investigations have provided evidence for menthol to increase cough thresholds. Racementhol is used as a topical analgesic.