U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 741 - 750 of 14117 results

Luminespib (NVP-AUY922) is a highly potent isoxazole-based, nongeldanamycin HSP90 inhibitor that inhibits the adenosine triphosphatase activity of HSP90. Luminespib is a highly potent HSP90 inhibitor for HSP90α/β with IC50 of 13 nM /21 nM in cell-free assays, weaker potency against the HSP90 family members GRP94 and TRAP-1, exhibits the tightest binding of any small-molecule HSP90 ligand. Luminespib potently inhibited in vitro growth in all 41 NSCLC cell lines evaluated with IC50 less than 100 nM. IC100 value less than 40 nM was seen in 36 of 41 lines. Luminespib (NVP-AUY922) has greater potency, reduced hepatotoxicity, and lower dependence on DT-diaphorase than the first-generation HSP90 inhibitors. Luminespib was discovered in a multiparameter lead optimization program based on a high-throughput screening hit methodology developed jointly by The Institute of Cancer Research, UK and the pharmaceutical company Vernalis. It has been licensed to Novartis. Luminespib activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. Pre-clinical studies proved that Luminespib acts via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. These results helped Luminespib to enter clinical trials for various cancers including breast cancers. From 2011 to 2014 it was in Phase II clinical trials.
Status:
Investigational
Source:
NCT00600275: Phase 1/Phase 2 Interventional Completed Solid Tumors
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



BGT 226 is an orally available, small molecule, the dual inhibitor of mammalian target of rapamycin (mTOR) and phosphatidylinositol 3'kinase (PI3K), developed by Novartis for the treatment of solid tumors, including advanced breast cancer. A phase I/II trial was completed in the US, Canada, and Spain, and a phase I trial was completed in Japan. However, development appears to have been discontinued.
Status:
Investigational
Source:
NCT01712815: Not Applicable Interventional Terminated HER2-positive Breast Cancer
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Clevudine F18 is a radioconjugate comprised of the synthetic pyrimidine analog clevudine (1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)thymine, d-FMAU) labeled with the radioisotope fluorine F18. Upon administration, fluorine F18 clevudine is distributed and taken up by cells based on the rate of the cell’s DNA synthesis. The amount is then measured using positron emission tomography (PET). The compound is investigated as an imaging agent in prostate, breast cancers, and other malignant neoplasms.
Status:
Investigational
Source:
NCT04373369: Phase 2 Interventional Active, not recruiting Extensive-stage Small Cell Lung Cancer
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT03193853: Phase 2 Interventional Completed Triple Negative Breast Cancer
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Serabelisib (INK1117 and TAK-117) is an orally bioavailable, PI3K p110α- isoform-specific inhibitor with an in vitro IC50 of 15 nM, highly selective against other isoforms (p110β, p110γ, and p110δ) and mTOR (no significant inhibitions at 1 μM concentration). It displayed significant efficacy in several PI3Kα mutant-specific preclinical mouse xenograft tumor models, and blocked signaling to Akt and inhibited the growth of cancer cells harboring wild-type or mutated p110α. Preclinical studies showed TAK-117 to have the low potential for disrupting glucose metabolism or for causing cardiac adverse events; in rats and monkeys, doses up to 50 mg/kg/day were well tolerated. Serabelisib is currently under clinical evaluation.
Status:
Investigational
Source:
NCT00588185: Not Applicable Interventional Recruiting Prostate Cancer
(2003)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:endrisone [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Endrysone is a glucocorticoid with anti-inflammatory and antiallergic properties. It is used topically for skin conditions as an ophthalmic anti-inflammatory agent.
Status:
Investigational
Source:
INN:tipredane
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Tipredane is one of the compounds of a new series of sulfur-containing steroids synthesized at The Squibb Institute for Medical Research and is being developed for topical treatment of human dermatoses. Tipredane is structurally unique in that the classical l7-beta two-carbon side chain and the 17-alpha hydrogen of the steroid have been replaced by two alkylthio substituents. Tipredane has been shown to possess moderate to potent anti-inflammatory activity in various animal models, and to exhibit favorable separation of local anti-inflammatory activity from adverse systemic effects in both animals and humans. After oral administration, [3H]tipredane was rapidly absorbed, metabolized, and excreted into urine and feces. Metabolism of tipredane was rapid and complex, with significant species differences, although the disposition in rhesus and cynomolgus monkeys seemed to be similar to humans. Tipredane had been investigated as the therapeutic agent for the treatment of allergic rhinitis, asthma and skin disorders. However, this development was discontinued.
Status:
Investigational
Source:
NCT01602393: Phase 2 Interventional Completed Alzheimer's Disease
(2012)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



CHF-5074 is a small molecule with a unique microglial modulating mechanism of action capable of selectively reducing pro-inflammatory activities of microglial cells while increasing their ability to remove neurotoxic amyloid beta (“Aβ”) aggregates in the brain by phagocytosis. CHF-5074 reduces Aβ42 and Aβ40 secretion, with an IC50 of 3.6 and 18.4 μM, respectively. Microglia are small cells that migrate through the brain to remove waste products, such as amyloid aggregates that cause inflammation and irreversible damage to nerve cells. Chronic dysfunction of microglia is increasingly believed to play an important role at the very beginnings of Alzheimer’s disease. The results from Chiesi’s human clinical studies corroborate the large body of data from published preclinical studies. In Alzheimer’s disease transgenic mouse models, CHF-5074 was shown to reduce neuroinflammation, inhibit brain amyloid β plaque deposits, reduce tau pathology, and reverse associated memory deficits. These findings indicate CHF-5074 acts simultaneously on several important therapeutic targets, and this neuroprotective multi-target approach may translate into preventing the memory loss that is the hallmark of Alzheimer’s disease.
Status:
Investigational
Source:
NCT01048255: Phase 2 Interventional Completed Partial Epilepsy
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Belnacasan (VX-765), and its active metabolite VRT- 043198, is a novel and irreversible IL-converting enzyme/ caspase-1 inhibitor. VRT-043198 exhibits 100- to 10,000-fold selectivity against other caspase-3, -6 and -9. It exhibited potent inhibition against ICE/caspase-1 and caspase-4 with Ki of 0.8 nM and less than 0.6 nM, respectively. And VRT-043198 also inhibits IL-1β release from both PBMCs and whole blood with IC50 of 0.67 uM and 1.9 uM, respectively. Belnacasan inhibits the release of IL-1, IL-18 and IL-33. Belnacasan has shown to inhibit acute partial seizures in preclinical models and has shown activity in preclinical models of chronic partial epilepsy that do not respond to currently available compounds for epilepsy. In addition, it seems to reduce disease severity and the expression of inflammatory mediators in models of rheumatoid arthritis and skin inflammation. Belnacasan had been in phase II clinical trials by Vertex for the treatment of epilepsy. However, this study has been terminated later.