{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for m root_codes_WIKIPEDIA in WIKIPEDIA (approximate match)
Status:
Possibly Marketed Outside US
Source:
VITA VOLU 101 ESSENCE by B&P COSMETIC, INC.
(2017)
Source URL:
First approved in 2017
Source:
VITA VOLU 101 ESSENCE by B&P COSMETIC, INC.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Possibly Marketed Outside US
First approved in 2017
Source:
M020
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Cinnamic acid is a polyphenol found in cinnamon oil and used in commercial flavorings. Recent studies have shown the pharmacological properties of cinnamic acid and its derivatives, including hepatoprotective, anti-oxidant, and anti-diabetic activities. In preclinical studies cinnamic acid demonstrated to be a promising candidate for the treatment ob obesity and diabetes. The mechanism of action of cinnamic acid in obesity is explained by its ability to inhibit lipases and ACE (angiotensin-converting enzyme). However, there are several hypotesis regarding the effect of cinnamic acid in diabetes: cinnamic acid enhances glucose-induced insulin secretion, prevents palmitic acid-induced lipotoxicity, inhibits palmitic acid-induced alteration of lipogenic gene and protein expression (AMPK, SREBP-1c, FAS, ACC), inhibits DPP IV, exhibits an additive effect on the uptake of glucose, stimulates adiponectin secretion, etc.
Status:
Possibly Marketed Outside US
First approved in 2017
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Gamolenic acid also known as gamma-lonolenic acid is a natural component of Oenothera biennis L. (Evening Primrose). Gamolenic acid was used for the treatment of breast painand atopic dermatitis in Europe, although now the drug is withdrawn from the market (there is no safety issue associated with the withdrawal of the licences). The mechanism of action of gamolenic acid is connected with its interaction with prostanoid pathway.
Status:
Possibly Marketed Outside US
Source:
21 CFR 333D
(2017)
Source URL:
First approved in 2017
Source:
21 CFR 333D
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 352
(2016)
Source URL:
First approved in 2016
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Lysophosphatidic acid (LPA) is a multifunctional intercellular phospholipid messenger. LPA stimulates the growth of a variety of cells including fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes. It is produced in relatively high levels from activated platelets and can be detected in bodily fluids including serum, saliva, follicular fluid, and malignant effusions. LPA acts as a proliferative and anti-apoptotic factor and is a ligand for LPA1 (EDG-2), LPA2 (EDG-4) and LPA3 (EDG-7) receptors. The plasma LPA level can be a useful marker for ovarian cancer, particularly in the early stages of the disease. It is known, that the therapeutic administration of LPA also blocked APAP-induced liver damage, leading to an increased survival rate by increasing the glutathione level but decreasing inflammatory cytokines in an LPA1,3,5-independent manner. Thus, LPA might be an important therapeutic agent for drug-induced liver injury. In addition, was shown, that LPA levels in plasma and ascites may be useful diagnostic biomarkers for peritoneal carcinomatosis of gastric cancer.
Status:
Possibly Marketed Outside US
Source:
21 CFR 352
(2016)
Source URL:
First approved in 2016
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
First approved in 2016
Source:
M020
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Uric acid, generated from the metabolism of purines, has proven and emerging roles in human disease. Humans produce large quantities of uric acid. Excess serum accumulation of uric acid can lead to a type of arthritis known as gout. Hyperuricemia may increase risk factors for cardiovascular disease. High serum uric acid was associated with higher risk of type 2 diabetes and other diseases.
Status:
Possibly Marketed Outside US
Source:
Ecosom by ECOSOM.Co.,Ltd.
(2015)
Source URL:
First approved in 2015
Source:
Ecosom by ECOSOM.Co.,Ltd.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 352
(2015)
Source URL:
First approved in 2015
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 346
(2015)
Source URL:
First approved in 2015
Source:
21 CFR 346
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)