{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1999)
Source:
NDA020954
(1999)
Source URL:
First approved in 1954
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Busulfan is a bifunctional alkylating agent, having a selective immunosuppressive effect on bone marrow. It has been used in the palliative treatment of chronic myeloid leukemia (myeloid leukemia, chronic). Most common adverse reactions (incidence greater than 60%) were: myelosuppression, nausea, stomatitis, vomiting, anorexia, diarrhea, insomnia, fever, hypomagnesemia, abdominal pain, anxiety, headache, hyperglycemia and hypokalemia. Itraconazole and acetaminophen can decrease busulfan clearance. Phenytoin increases hepatic clearance of busulfan.
Status:
US Approved Rx
(2014)
Source:
ANDA202687
(2014)
Source URL:
First approved in 1954
Source:
8-MOP by VALEANT PHARM INTL
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.
Status:
US Approved Rx
(2008)
Source:
ANDA040904
(2008)
Source URL:
First approved in 1953
Source:
DIAMOX by TEVA BRANDED PHARM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Acetazolamide, usually sold under the trade name Diamox in some countries. DIAMOX is used for adjunctive treatment of: chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma where delay of surgery is desired in order to lower intraocular pressure. DIAMOX is also indicated for the prevention or amelioration of symptoms associated with acute mountain sickness despite gradual ascent. DIAMOX is an enzyme inhibitor that acts specifically on carbonic anhydrase, the enzyme that catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the secretion of aqueous humor and results in a drop in intraocular pressure, a reaction considered desirable in cases of glaucoma and even in certain non-glaucomatous conditions. Evidence seems to indicate that DIAMOX has utility as an adjuvant in treatment of certain dysfunctions of the central nervous system (e.g., epilepsy). The diuretic effect of DIAMOX is due to its action in the kidney on the reversible reaction involving hydration of carbon dioxide and dehydration of carbonic acid. The result is renal loss of HCO3 ion, which carries out sodium, water, and potassium. It is on the World Health Organization's List of Essential Medicines, a list of the most important medications needed in a basic health system.
Status:
US Approved Rx
(2010)
Source:
ANDA040858
(2010)
Source URL:
First approved in 1953
Source:
APRESOLINE by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Hydralazine is a direct-acting vasodilator that is used as an antihypertensive agent. Hydralazine works by relaxing blood vessels (arterioles more than venules) and increasing the supply of blood and oxygen to the heart while reducing its workload. It also functions as an antioxidant. It inhibits membrane-bound enzymes that form reactive oxygen species, such as superoxides. Excessive superoxide counteracts NO-induced vasodilation. Hydralazine is used for the treatment of essential hypertension, alone or as an adjunct. Also for the management of severe hypertension when the drug cannot be given orally or when blood pressure must be lowered immediately, congestive heart failure (in combination with cardiac glycosides and diuretics and/or with isosorbide dinitrate), and hypertension secondary to pre-eclampsia/eclampsia.
Status:
US Approved Rx
(1983)
Source:
ANDA088235
(1983)
Source URL:
First approved in 1952
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Isoniazid is a bactericidal agent active against organisms of the genus Mycobacterium, specifically M. tuberculosis, M. bovis and M. kansasii. Isoniazid is recommended for all forms of tuberculosis in which organisms are susceptible. Isoniazid is a prodrug and must be activated by bacterial catalase. Isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. The most frequent adverse reactions to isoniazid are those affecting the nervous system and the liver.
Status:
US Approved Rx
(2025)
Source:
ANDA218830
(2025)
Source URL:
First approved in 1950
Source:
TAPAZOLE by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Methimazole (also known as Tapazole or Thiamazole or MMI) is an antithyroid drug. Methimazole binds to thyroid peroxidase and thereby inhibits the conversion of iodide to iodine. Thyroid peroxidase normally converts iodide to iodine (via hydrogen peroxide as a cofactor) and also catalyzes the incorporation of the resulting iodide molecule onto both the 3 and/or 5 positions of the phenol rings of tyrosines found in thyroglobulin. Thyroglobulin is degraded to produce thyroxine (T4) and tri-iodothyronine (T3), which are the main hormones produced by the thyroid gland. So methimazole effectively inhibits the production of new thyroid hormones. Methimazole is used for the treatment of hyperthyroidism, goiter, Graves disease and psoriasis.
Status:
US Approved Rx
(2022)
Source:
NDA216264
(2022)
Source URL:
First approved in 1950
Source:
NDA022272
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Indigotindisulfonic acid (also known as Indigo carmine) is a synthetic dye discovered in 18th century. It is used in many countiries as a food colorant and a pH indicator. In medicine the dye is used to localize ureteral orifices during cystoscopy and ureteral catheterization. In June 2014 the FDA announced the shortage of indigotindisulfonic acid.
Status:
US Approved Rx
(2018)
Source:
ANDA206850
(2018)
Source URL:
First approved in 1943
Source:
ESTINYL by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ethinyl estradiol is a synthetic derivative of the natural estrogen estradiol. It is one of two estrogens currently used in oral contraceptive pills. The other, mestranol, is converted to ethinyl estradiol before it is biologically active. Ethinyl estradiol and norethindrone are used together as an oral contraceptive agent. Estrogens diffuse into their target cells and interact with a protein receptor. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. This cascade is initiated by initially binding to the estrogen receptors. The combination of an estrogen with a progestin suppresses the hypothalamic-pituitary system, decreasing the secretion of gonadotropin-releasing hormone (GnRH). Used for treatment of moderate to severe vasomotor symptoms associated with the menopause, female hypogonadism, prostatic carcinoma-palliative therapy of advanced disease, breast cancer, as an oral contraceptive, and as emergency contraceptive.
Status:
US Approved Rx
(2023)
Source:
ANDA214484
(2023)
Source URL:
First marketed in 1937
Source:
Dexedrine by Smith Kline French
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED). After oral administration, lisdexamfetamine dimesylate is rapidly absorbed from the gastrointestinal tract and converted to dextroamphetamine, which is responsible for the drug’s activity. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. Most common adverse reactions in children, adolescents and/or adults with ADHD were anorexia, anxiety, decreased appetite, decreased weight, diarrhea, dizziness, dry mouth, irritability, insomnia, nausea, upper abdominal pain, and vomiting. Agents that alter urinary pH can alter blood levels of amphetamine. Acidifying agents decrease amphetamine blood levels, while alkalinizing agents increase amphetamine blood levels. Needs to adjust Lisdexamfetamine dosage accordingly.
Status:
US Approved Rx
(2022)
Source:
ANDA215634
(2022)
Source URL:
First marketed in 1934
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Progesterone is indicated in amenorrhea and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids of uterine cancer. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Progesterone is a naturally occurring steroid that is secreted by the ovary, placenta, and adrenal gland. In the presence of adequate estrogen, progesterone transforms a proliferative endometrium into a secretory endometrium. Progesterone is necessary to increase endometrial receptivity for implantation of an embryo. Once an embryo is implanted, progesterone acts to maintain a pregnancy. Progesterone shares the pharmacological actions of the progestins. Progesterone binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progesterone will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. In women who have adequate endogenous estrogen, progesterone transforms a proliferative endometrium into a secretory one. Progesterone is metabolized primarily by the liver largely to pregnanediols and pregnanolones. Pregnanediols and pregnanolones are conjugated in the liver to glucuronide and sulfate metabolites. Progesterone metabolites that are excreted in the bile may be deconjugated and may be further metabolized in the gut via reduction, dehydroxylation, and epimerization. Common progesterone side effects may include: drowsiness, dizziness; breast pain; mood changes; headache; constipation, diarrhea, heartburn; bloating, swelling in your hands or feet; joint pain; hot flashes; or vaginal discharge.