U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1131 - 1140 of 4602 results

Prochlorperazine is a piperazine phenothiazine antipsychotic which block postsynaptic mesolimbic dopaminergic receptors in the brain and has antiemetic effects by its antagonist actions in the D2 dopamine receptors in the chemoreceptor trigger zone. It also exhibits alpha-adrenergic blocking effect on α1 receptros and may depress the release of hypothalamic and hypophyseal hormones. Prochlorperazine is used for the control of severe nausea and vomiting, for the treatment of schizophrenia. Prochlorperazine is effective for the short-term treatment of generalized non-psychotic anxiety. Prochlorperazine may be an effective treatment of acute headaches and refractory chronic daily headache.
Hydroxyzine, a piperazine antihistamine structurally related to buclizine, cyclizine, and meclizine, is used to treat histamine-mediated pruritus or pruritus due to allergy, nausea and vomiting, and, in combination with an opiate agonist, anxiolytic pain. Hydroxyzine is also used as a perioperative sedative and anxiolytic and to manage acute alcohol withdrawal. Hydroxyzine competes with histamine for binding at H1-receptor sites on the effector cell surface, resulting in suppression of histaminic edema, flare, and pruritus. The sedative properties of hydroxyzine occur at the subcortical level of the CNS. Secondary to its central anticholinergic actions, hydroxyzine may be effective as an antiemetic. It is used for symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested.
LIBRAX® combines in a single capsule formulation the antianxiety action of chlordiazepoxide hydrochloride and the anticholinergic/spasmolytic effects of clidinium bromide. Chlordiazepoxide hydrochloride is a versatile, therapeutic agent of proven value for the relief of anxiety and tension. It is indicated when anxiety, tension or apprehension are significant components of the clinical profile. It is among the safer of the effective psychopharmacologic compounds. Clidinium bromide is a synthetic anticholinergic agent which has been shown in experimental and clinical studies to have a pronounced antispasmodic and antisecretory effect on the gastrointestinal tract. It inhibits muscarinic actions of acetylcholine at postganglionic parasympathetic neuroeffector sites. LIBRAX® is indicated to control emotional and somatic factors in gastrointestinal disorders. It may also be used as adjunctive therapy in the treatment of peptic ulcer and in the treatment of the irritable bowel syndrome (irritable colon, spastic colon, mucous colitis) and acute enterocolitis.
Liothyronine (CYTOMEL®) is a T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than its prohormone thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. The mechanisms by which thyroid hormones exert their physiologic action are not well understood. These hormones enhance oxygen consumption by most tissues of the body, increase the basal metabolic rate and the metabolism of carbohydrates, lipids, and proteins. Thus, they exert a profound influence on every organ system in the body and are of particular importance in the development of the central nervous system. Thyroid hormone drugs are indicated: as the replacement or supplemental therapy in patients with hypothyroidism of any etiology; as pituitary thyroid-stimulating hormone (TSH) suppressants, in the treatment or prevention of various types of euthyroid goiters; as diagnostic agents in suppression tests to differentiate suspected mild hyperthyroidism or thyroid gland autonomy.
Status:
First approved in 1956
Source:
Seromycin by Lilly
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Cycloserine was discovered simultaneously in 1954 by Eli Lilly and Merck. The drug was approved for the treatment of active pulmonary and extrapulmonary tuberculosis and marketed under the name Seromycin (among the others). Cycloserine suppresses the synthesis of bacterial wall by inhibitin two enzymes: alanine racemase and d-alanine ligase.
Penicillin V is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Penicillin V has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of Penicillin V results from the inhibition of cell wall synthesis and is mediated through Penicillin V binding to penicillin binding proteins (PBPs). Penicillin V is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, Penicillin V inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Penicillin V interferes with an autolysin inhibitor. Used for the treatment of mild to moderately severe infections (e.g. dental infection, infections in the heart, middle ear infections, rheumatic fever, scarlet fever, skin infections, upper and lower respiratory tract infections) due to microorganisms.
Hydroxychloroquine possesses antimalarial properties and also exerts a beneficial effect in lupus erythematosus (chronic discoid or systemic) and acute or chronic rheumatoid arthritis. Although the exact mechanism of action is unknown, it may be based on ability of hydroxychloroquine to bind to and alter DNA. Hydroxychloroquine has also has been found to be taken up into the acidic food vacuoles of the parasite in the erythrocyte. This increases the pH of the acid vesicles, interfering with vesicle functions and possibly inhibiting phospholipid metabolism. In suppressive treatment, hydroxychloroquine inhibits the erythrocytic stage of development of plasmodia. In acute attacks of malaria, it interrupts erythrocytic schizogony of the parasite. Its ability to concentrate in parasitized erythrocytes may account for their selective toxicity against the erythrocytic stages of plasmodial infection. As an antirheumatic, hydroxychloroquine is thought to act as a mild immunosuppressant, inhibiting the production of rheumatoid factor and acute phase reactants. It also accumulates in white blood cells, stabilizing lysosomal membranes and inhibiting the activity of many enzymes, including collagenase and the proteases that cause cartilage breakdown. Hydroxychloroquine is used for the suppressive treatment and treatment of acute attacks of malaria due to Plasmodium vivax, P. malariae, P. ovale, and susceptible strains of P. falciparum. It is also indicated for the treatment of discoid and systemic lupus erythematosus, and rheumatoid arthritis.
Status:
First approved in 1955
Source:
Avlosulfon by Ayerst
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Dapsone was synthesized in 1908 by Fromm and Wittmann. The drug was approved by FDA for the treatment of such conditions as acne vulgaris, leprosy and dermatitis herpetiformis, also the drug is used off-label for many skin diseases. Although the exact mechanism of dapsone action is unknown, it is speculated that it acts as both anti-inflammatory and antimicrobial agent. It was demonstrated that dapsone suppresses ROS generation, inhibits neutrophil myeloperoxidase and eosinophil peroxidase and also inhibits bacterial dihydropteroate synthase.
Sorbitol is a polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. Used as a non-stimulant laxative via an oral suspension or enema. Sorbitol exerts its laxative effect by drawing water into the large intestine, thereby stimulating bowel movements. Sorbitol plays a vital step in the 'polyol pathway'. The sudden injection of extra sorbitol can ruin the equilibrium of enzymes that regulate the conversion of glucose to fructose in a process associated with the onset of diabetes and its complications. Further, the polyol pathway is involved with a complex network of metabolic activities; disruption leads to a cascade of problems (citations here, here and here) such as mitochondrial failure, cell apoptosis (cell death), and DNA fragmentation. In general, sorbitol induces cell hyperosmotic stress resulting in phosphorylation (uptake of phosphorus into cell) — an important on/off switch regulating enzymes and signaling networks.
Sorbitol is a polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. Used as a non-stimulant laxative via an oral suspension or enema. Sorbitol exerts its laxative effect by drawing water into the large intestine, thereby stimulating bowel movements. Sorbitol plays a vital step in the 'polyol pathway'. The sudden injection of extra sorbitol can ruin the equilibrium of enzymes that regulate the conversion of glucose to fructose in a process associated with the onset of diabetes and its complications. Further, the polyol pathway is involved with a complex network of metabolic activities; disruption leads to a cascade of problems (citations here, here and here) such as mitochondrial failure, cell apoptosis (cell death), and DNA fragmentation. In general, sorbitol induces cell hyperosmotic stress resulting in phosphorylation (uptake of phosphorus into cell) — an important on/off switch regulating enzymes and signaling networks.

Showing 1131 - 1140 of 4602 results