U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Indium In-111 is used in specialized diagnostic applications, for example, with indium-111 labelled antibodies. It is useful for labelling blood cell components. Other applications include labelling of platelets for thrombus detection, labelled leukocytes for localization of inflammation and abscesses, as well as leukocyte kinetics. Indium forms a saturated (1:3) complex with oxyquinoline. The complex is neutral and lipidsoluble, which enables it to penetrate the cell membrane. Within the cell, indium becomes firmly attached to cytoplasmic components; the liberated oxyquinoline is released by the cell. It is thought likely that the mechanism of labeling cells with indium In 111 oxyquinoline involves an exchange reaction between the oxyquinoline carrier and subcellular components which chelate indium more strongly than oxyquinoline. Indium In-111 oxyquinoline is indicated for radiolabeling autologous leukocytes. Indium In-111 oxyquinoline labeled leukocytes may be used as an adjunct in the detection of inflammatory processes to which leukocytes migrate, such as those associated with abscesses or other infection, following reinjection and detection by appropriate imaging procedures. The degree of accuracy may vary with labeling techniques and with the size, location and nature of the inflammatory process. Sensitivity reactions (urticaria) have been reported. The presence of fever may mask pyrogenic reactions from indium In 111 oxyquinoline labeled leukocytes. Indium In-111 Chloride is a diagnostic radiopharmaceutical intended for radiolabeling OncoScint (satumomab pendetide) or ProstaScint (capromab pendetide) used for in vivo diagnostic imaging procedures and for radiolabeling Zevalin (ibritumomab tiuxetan) in preparations used for radioimmunotherapy procedures.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)



Titanium dioxide, also known as titanium(IV) oxide or titania, is the naturally occurring oxide of titanium, chemical formula TiO 2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. Generally it is sourced from ilmenite, rutile and anatase. It has a wide range of applications, from paint to sunscreen to food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million metric tons. Titanium dioxide has excellent ultraviolet (UV) resistant qualities and acts as a UV absorbent. In the pharmaceutical industry, titanium dioxide is used in most sunscreens to block UVA and UVB rays, similar to zinc oxide. It is also commonly used as pigment for pharmaceutical products such as gelatin capsules, tablet coatings and syrups. In the cosmetics industry, it is used in toothpaste, lipsticks, creams, ointments and powders. It can be used as an opacifier to make pigments opaque. The FDA has approved the safety of titanium dioxide for use as a colorant in food, drugs and cosmetics, including sunscreens. However, controversy exists as to the safety of titanium dioxide nanoparticles used in the cosmetics industry, for example in sunscreens. Titanium and zinc oxides may be made into the nanoparticle size (0.2-100 nanometers) to reduce the white appearance when applied topically, but retain the UV blocking properties. Recent studies suggest titanium dioxide nanoparticles may be toxic, although further research is needed.

Class (Stereo):
CHEMICAL (ACHIRAL)

Iodide ion I-125 is radioisotope of iodine with half-life 59.4 days. It decays with the emission of low-energy gamma rays. It is used as a source for bone densitometry devices, protein iodination. Seeds implantations with I-125 are used in the clinics for the treatment of prostate cancer, malignant biliary obstruction, non-small cell lung cancer, colorectal cancer, uveal melanoma, and other tumors.
Status:
First approved in 1976

Class (Stereo):
CHEMICAL (ACHIRAL)


Gallium citrate Ga 67 is the citrate salt of the radioisotope gallium Ga 67. Although the mechanism is unknown, gallium Ga 67 concentrates in lysosomes and is bound to a soluble intracellular protein in certain viable primary and metastatic tumors and focal sites of inflammation, allowing scintigraphic localization. Ga-67 scintigraphy (GS) cannot differentiate between tumor and acute inflammation. Gallium Citrate Ga 67 Injection may be useful in demonstrating the presence of the following malignancies: Hodgkins disease, lymphomas and bronchogenic carcinoma. Positive Ga 67 uptake in the absence of prior symptoms warrants follow-up as an indication of a potential disease state.
Status:
First approved in 1974

Class (Stereo):
CHEMICAL (ACHIRAL)


XENON XE-133 (Xenon-133) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs. It is also used to image blood flow, particularly in the brain. Xenon Xe 133 diffuses easily, passing through cell membranes and exchanging freely between blood and tissue. It is distributed in the lungs in a manner similar to that of air, thus representing the regions of the lung that are aerated. The gamma photons of xenon Xe 133 can then be employed to obtain counts per minute per lung or region of the lung, or to display their distribution as a scan. Scintigraphs taken during the washout period, as the patient breathes room air, will show any obstruction in the airways as regions of radioactive gas trapping or retention. (In the presence of an abnormal or near normal Tc 99m albumin aggregated perfusion study, a normal ventilation study favors a diagnosis of pulmonary emboli. However, the presence of xenon Xe 133 gas trapping, during washout imaging, in areas of abnormal perfusion, favors a diagnosis of chronic-type obstructive pulmonary disease.)

Class (Stereo):
CHEMICAL (ACHIRAL)


Molybdenum-99 (99Mo, half-life = 66 h) is a parent radionuclide of a diagnostic nuclear isotope. It decays in technetium-99 m (half-life = 6 h), which is used in over 30 million procedures per year around the world. Between 95 and 98 percent of Mo-99 is currently being produced using highly enriched uranium (HEU) targets. Other medical isotopes such as iodine-131 (I-131) and xenon-133 (Xe-133) are by-products of the Mo-99 production process and will be sufficiently available if Mo-99 is available.
Status:
First approved in 1951
Source:
NAI (131I) by Abbott
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Iodide I-131 (as Sodium iodide I-131) is a radioisotopic drug used for the treatment and palliation of thyroid malignancy. Therapeutic solutions of Sodium Iodide-131 are indicated for the treatment of hyperthyroidism and thyroid carcinomas that take up iodine. Palliative effects may be observed in patients with advanced thyroid malignancy if the metastatic lesions take up iodine. It is also indicated for use in performance of the radioactive iodide (RAI) uptake test to evaluate thyroid function. Taken orally, sodium iodide I-131 is rapidly absorbed and distributed within the extracellular fluid of the body. The iodide is concentrated in the thyroid via the sodium/iodide symporter, and subsequently oxidized to iodine. The destruction of thyroidal tissue is achieved by the beta emission of sodium iodide I-131.
Status:
First marketed in 1934

Class (Stereo):
CHEMICAL (ACHIRAL)


Helium is a chemical element with symbol He and atomic number 2. It is inert, non-toxic odorless gas. In medicine, helium is used to help the flow of oxygen in diseases such as bronchitis, or to assist breathing if part of lungs fails to expand. The mixture of helium and oxygen is known as heliox.
Status:
First marketed in 1921
Source:
Potassium Sulphate N.F.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

SULFATE (as sodium sulfate, potassium sulfate, and magnesium sulfate) is a component of SUPREP Bowel Prep Kit. It is an osmotic laxative indicated for cleansing of the colon in preparation for colonoscopy in adults. Sulfate salts provide sulfate anions, which are poorly absorbed. The osmotic effect of unabsorbed sulfate anions and the associated cations causes water to be retained within the gastrointestinal tract. SUPREP Bowel Prep Kit, when ingested with a large volume of water, produces copious watery diarrhea.
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.