U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 81 - 90 of 713 results

Sildenafil (Viagra, Revatio) is a PDE5 inhibitor which was approved by FDA for the treatment of erectile disfunction and adults with pulmonary arterial hypertension. Upon administration sildenafil inhibits PDE5 and results in elevated level of cyclic guanosine monophosphate and smooth muscle relaxation.
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Aminolevulinic Acid is the first compound in the porphyrin synthesis pathway. The metabolism of aminolevulinic acid (ALA) is the first step in the biochemical pathway resulting in heme synthesis. Aminolevulinic acid is not a photosensitizer, but rather a metabolic precursor of protoporphyrin IX (PpIX), which is a photosensitizer. The synthesis of ALA is normally tightly controlled by feedback inhibition of the enzyme, ALA synthetase, presumably by intracellular heme levels. ALA, when provided to the cell, bypasses this control point and results in the accumulation of PpIX, which is converted into heme by ferrochelatase through the addition of iron to the PpIX nucleus. Marketed under the brand name LEVULAN KERASTICK for Topical Solution plus blue light illumination using the BLU-U Blue Light Photodynamic Therapy Illuminator, it is indicated for the treatment of minimally to moderately thick actinic keratoses (Grade 1 or 2, see table 2 for definition) of the face or scalp. Aminolevulinic acid is also being studied in the treatment of other conditions and types of cancer. An orally-administered in vivo diagnostic agent, Aminolevulinic acid, is used in photodynamic diagnosis (PDD) whose aim is to help doctors visualize the tumor tissue during surgical resection of malignant glioma, it is already sold in over 20 European countries including Germany and the U.K. According to the presumed mechanism of action, photosensitization following application of aminolevulinic acid (ALA) topical solution occurs through the metabolic conversion of ALA to protoporphyrin IX (PpIX), which accumulates in the skin to which aminolevulinic acid has been applied. When exposed to light of appropriate wavelength and energy, the accumulated PpIX produces a photodynamic reaction, a cytotoxic process dependent upon the simultaneous presence of light and oxygen. The absorption of light results in an excited state of the porphyrin molecule, and subsequent spin transfer from PpIX to molecular oxygen generates singlet oxygen, which can further react to form superoxide and hydroxyl radicals. Photosensitization of actinic (solar) keratosis lesions using aminolevulinic acid, plus illumination with the BLU-UTM Blue Light Photodynamic Therapy Illuminator (BLU-U), is the basis for aminolevulinic acid photodynamic therapy (PDT).
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines. Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Budesonide is a glucocorticoid used in the management of asthma, the treatment of various skin disorders, allergic rhinitis and ulcerative colitis. The precise mechanism of corticosteroid actions on inflammation in asthma is not well known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory activities against multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in allergic- and non-allergic-mediated inflammation. The anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma. Commonly reported side effects of budesonide include: acne vulgaris, moon face, and bruise. Other side effects include: ankle edema, hirsutism, weakness, arthralgia, nausea, and rhinitis. Ketoconazole, a potent inhibitor of cytochrome P450 (CYP) isoenzyme 3A4 (CYP3A4), the main metabolic enzyme for corticosteroids, increased plasma levels of orally ingested budesonide.
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Status:
First approved in 1994
Source:
IOBENGUANE SULFATE I 131 by PHARMALUCENCE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Iobenguane I-131 is a radioactive therapeutic agent. The drug contains radioactive isotope I-131, which decays by electron emission with a half-life of about 8 days. By the chemical structure, iobenguane is similar to the neurotransmitter norepinephrine and is subject to the same uptake and regulation pathways. After intravenous administration, iobenguane I-131 accumulates within pheochromocytoma and paraganglioma cells, and radiation from the radioactive decay causes cell death and tumor necrosis. Iobenguane I-131 was approved by the FDA for the treatment of adult and pediatric patients with iobenguane scan positive, unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma who require systemic anticancer therapy. Iobenguane I-131 is investigated in clinical trials as a treatment of neuroblastoma, ganglioneuroblastoma and other tumors of neuroendocrinal origin.

Class (Stereo):
CHEMICAL (ACHIRAL)


Gadodiamide is a nonionic, low-osmolar gadolinium-based contrast agent for diagnostic contrast-enhanced magnetic resonance imaging (MRI).
SPORANOX is the brand name for itraconazole, an azole antifungal agent. Itraconazole is a 1:1:1:1 racemic mixture of four diastereomers (two enantiomeric pairs), each possessing three chiral centers. In vitro studies have demonstrated that itraconazole inhibits the cytochrome P450-dependent synthesis of ergosterol, which is a vital component of fungal cell membranes. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Itraconazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis. SPORANOX capsules are indicated for the treatment of the following fungal infections in immunocompromised and non-immunocompromised patients: Blastomycosis, pulmonary and extrapulmonary; Histoplasmosis, including chronic cavitary pulmonary disease and disseminated, nonmeningeal histoplasmosis, and Aspergillosis, pulmonary and extrapulmonary, in patients who are intolerant of or who are refractory to amphotericin B therapy. SPORANOX is also indicated for the treatment of the following fungal infections in non-immunocompromised patients: Onychomycosis of the toenail, with or without fingernail involvement, due to dermatophytes (tinea unguium), and Onychomycosis of the fingernail due to dermatophytes (tinea unguium). Itraconazole is mainly metabolized through CYP3A4. Other drugs that either share this metabolic pathway or modify CYP3A4 activity may influence the pharmacokinetics of itraconazole. Similarly, itraconazole may modify the pharmacokinetics of other drugs that share this metabolic pathway. Itraconazole is a potent CYP3A4 inhibitor and a P-glycoprotein inhibitor. When using concomitant medication, it is recommended that the corresponding label be consulted for information on the route of metabolism and the possible need to adjust dosages.