{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for amphotericin root_codes_url in Code URL (approximate match)
Status:
US Approved Rx
(1964)
Source:
ANDA060593
(1964)
Source URL:
First approved in 1956
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cycloserine was discovered simultaneously in 1954 by Eli Lilly and Merck. The drug was approved for the treatment of active pulmonary and extrapulmonary tuberculosis and marketed under the name Seromycin (among the others). Cycloserine suppresses the synthesis of bacterial wall by inhibitin two enzymes: alanine racemase and d-alanine ligase.
Status:
US Approved Rx
(1968)
Source:
ANDA060711
(1968)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Penicillin V is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Penicillin V has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of Penicillin V results from the inhibition of cell wall synthesis and is mediated through Penicillin V binding to penicillin binding proteins (PBPs). Penicillin V is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, Penicillin V inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Penicillin V interferes with an autolysin inhibitor. Used for the treatment of mild to moderately severe infections (e.g. dental infection, infections in the heart, middle ear infections, rheumatic fever, scarlet fever, skin infections, upper and lower respiratory tract infections) due to microorganisms.
Status:
US Approved Rx
(2023)
Source:
ANDA212383
(2023)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ACHIRAL)
Dapsone was synthesized in 1908 by Fromm and Wittmann. The drug was approved by FDA for the treatment of such conditions as acne vulgaris, leprosy and dermatitis herpetiformis, also the drug is used off-label for many skin diseases. Although the exact mechanism of dapsone action is unknown, it is speculated that it acts as both anti-inflammatory and antimicrobial agent. It was demonstrated that dapsone suppresses ROS generation, inhibits neutrophil myeloperoxidase and eosinophil peroxidase and also inhibits bacterial dihydropteroate synthase.
Status:
US Approved Rx
(1993)
Source:
NDA020006
(1993)
Source URL:
First approved in 1955
Source:
Levsin by Alaven Pharmaceutical LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Sorbitol is a polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. Used as a non-stimulant laxative via an oral suspension or enema. Sorbitol exerts its laxative effect by drawing water into the large intestine, thereby stimulating bowel movements. Sorbitol plays a vital step in the 'polyol pathway'. The sudden injection of extra sorbitol can ruin the equilibrium of enzymes that regulate the conversion of glucose to fructose in a process associated with the onset of diabetes and its complications. Further, the polyol pathway is involved with a complex network of metabolic activities; disruption leads to a cascade of problems (citations here, here and here) such as mitochondrial failure, cell apoptosis (cell death), and DNA fragmentation. In general, sorbitol induces cell hyperosmotic stress resulting in phosphorylation (uptake of phosphorus into cell) — an important on/off switch regulating enzymes and signaling networks.
Status:
US Approved Rx
(2020)
Source:
ANDA212541
(2020)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pyrazinamide is indicated for the initial treatment of active tuberculosis in adults and children when combined with other antituberculous agents. (The current recommendation of the CDC for drug-susceptible disease is to use a six-month regimen for initial treatment of active tuberculosis, consisting of isoniazid, rifampin and pyrazinamide given for 2 months, followed by isoniazid and rifampin for 4 months. Pyrazinamide should only be used in conjunction with other effective antituberculous agents. Pyrazinamide diffuses into M. tuberculosis, where the enzyme pyrazinamidase converts pyrazinamide to the active form pyrazinoic acid. Under acidic conditions, the pyrazinoic acid that slowly leaks out converts to the protonated conjugate acid, which is thought to diffuse easily back into the bacilli and accumulate. The net effect is that more pyrazinoic acid accumulates inside the bacillus at acid pH than at neutral pH. Pyrazinoic acid was thought to inhibit the enzyme fatty acid synthase (FAS) I, which is required by the bacterium to synthesise fatty acids. However, this theory was thought to have been discounted. However, further studies reproduced the results of FAS I inhibition as the putative mechanism first in whole cell assay of replicating M. tuberculosis bacilli which have shown that pyrazinoic acid and its ester inhibit the synthesis of fatty acids . This study was followed by in vitro assay of tuberculous FAS I enzyme that tested the activity with pyrazinamide, pyrazinoic acid and several classes of pyrazinamide analogs. Pyrazinamide and its analogs inhibited the activity of purified FAS I. It has also been suggested that the accumulation of pyrazinoic acid disrupts membrane potential and interferes with energy production, necessary for survival of M. tuberculosis at an acidic site of infection. Pyrazinoic acid has also been shown to bind to the ribosomal protein S1 (RpsA) and inhibit trans-translation. This may explain the ability of the drug to kill dormant mycobacteria
Status:
US Approved Rx
(2010)
Source:
ANDA091396
(2010)
Source URL:
First approved in 1955
Source:
DELTA-CORTEF by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Prednisolone hemisuccinate is a prodrug of a glucocorticoid agonist prednisolone, which is marketed under trade name Prednisolut in Germany and Austria. Prednisolone hemisuccinate is used in emergency medicine to treate shock due to allergic reaction, insect and snake bites, in neurology to treat brain edema and meningitis, in transplantation medicine to reduce risk of organ refection after kidney transplane, in pneumology to treat acute asthma attack, pulmonary edema, in severe or life-threatening situation in rheumatic diseases.
Status:
US Approved Rx
(2002)
Source:
ANDA076268
(2002)
Source URL:
First approved in 1954
Source:
NDA009330
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Digoxin, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Digoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium. The sodium calcium exchanger (NCX) in turn tries to extrude the sodium and in so doing, pumps in more calcium. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential.
Status:
US Approved Rx
(1999)
Source:
NDA020954
(1999)
Source URL:
First approved in 1954
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Busulfan is a bifunctional alkylating agent, having a selective immunosuppressive effect on bone marrow. It has been used in the palliative treatment of chronic myeloid leukemia (myeloid leukemia, chronic). Most common adverse reactions (incidence greater than 60%) were: myelosuppression, nausea, stomatitis, vomiting, anorexia, diarrhea, insomnia, fever, hypomagnesemia, abdominal pain, anxiety, headache, hyperglycemia and hypokalemia. Itraconazole and acetaminophen can decrease busulfan clearance. Phenytoin increases hepatic clearance of busulfan.
Status:
US Approved Rx
(1955)
Source:
NDA010040
(1955)
Source URL:
First approved in 1954
Source:
HYPAQUE by GE HEALTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
This compound belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. A commonly used x-ray contrast medium. Used, alone or in combination, for a wide variety of diagnostic imaging methods, including angiography, urography, cholangiography, computed tomography, hysterosalpingography, and retrograde pyelography. It can be used for imaging the gastrointestinal tract in patients allergic to barium. Radiopaque agents are drugs used to help diagnose certain medical problems. They contain iodine, which blocks x-rays. Depending on how the radiopaque agent is given, it localizes or builds up in certain areas of the body. The resulting high level of iodine allows the x-rays to make a "picture" of the area. The areas of the body in which the radiopaque agent localizes will appear white on the x-ray film. This creates the needed distinction, or contrast, between one organ and other tissues.
Status:
US Approved Rx
(2007)
Source:
ANDA040767
(2007)
Source URL:
First approved in 1953
Source:
METHOTREXATE SODIUM by STRIDES PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Methotrexate is an antineoplastic anti-metabolite. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. Methotrexate inhibits folic acid reductase which is responsible for the conversion of folic acid to tetrahydrofolic acid. At two stages in the biosynthesis of purines and at one stage in the synthesis of pyrimidines, one-carbon transfer reactions occur which require specific coenzymes synthesized in the cell from tetrahydrofolic acid. Tetrahydrofolic acid itself is synthesized in the cell from folic acid with the help of an enzyme, folic acid reductase. Methotrexate looks a lot like folic acid to the enzyme, so it binds to it quite strongly and inhibits the enzyme. Thus, DNA synthesis cannot proceed because the coenzymes needed for one-carbon transfer reactions are not produced from tetrahydrofolic acid because there is no tetrahydrofolic acid. Methotrexate selectively affects the most rapidly dividing cells (neoplastic and psoriatic cells). Methotrexate is indicated in the treatment of gestational choriocarcinoma, chorioadenoma destruens and hydatidiform mole. In acute lymphocytic leukemia, methotrexate is indicated in the prophylaxis of meningeal leukemia and is used in maintenance therapy in combination with other chemotherapeutic agents. Methotrexate is also indicated in the treatment of meningeal leukemia. Methotrexate is used alone or in combination with other anticancer agents in the treatment of breast cancer, epidermoid cancers of the head and neck, advanced mycosis fungoides (cutaneous T cell lymphoma), and lung cancer, particularly squamous cell and small cell types. Methotrexate is also used in combination with other chemotherapeutic agents in the treatment of advanced stage non-Hodgkin’s lymphomas. Methotrexate is indicated in the symptomatic control of severe, recalcitrant, disabling psoriasis. Methotrexate is indicated in the management of selected adults with severe, active rheumatoid arthritis (ACR criteria), or children with active polyarticular-course juvenile rheumatoid arthritis.