{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Prostaglandin Analogue" in comments (approximate match)
Status:
US Approved Rx
(2009)
Source:
NDA022387
(2009)
Source URL:
First approved in 2002
Source:
NDA021272
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Treprostinil (marketed under the trade names Remodulin for infusion) is a vasodilator that is used for the treatment of pulmonary arterial hypertension. Pulmonary arterial hypertension (PAH) is a disease in which blood pressure is abnormally high in the arteries between the heart and lungs. PAH is characterized by symptoms of shortness of breath during physical exertion. The condition can ultimately lead to heart failure. Treprostinil is a potent oral antiplatelet agent. The major pharmacologic actions of treprostinil are direct vasodilation of pulmonary and systemic arterial vascular beds and inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. Other studies have shown that treprostinil causes a dose-related negative inotropic and lusitropic effect. No major effects on cardiac conduction have been observed. Treprostinil had high affinity for the Prostaglandin D2 receptor (DP1), Prostaglandin E2 receptor EP2 subtype (EP2) and Prostaglandin D2 receptor (IP) receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, Prostaglandin F (FP) and thromboxane (TP) receptors. Treprostinil has demonstrated a unique effect on PPAR gamma, a transcription factor important in vascular pathogenesis as a mediator of proliferation, inflammation and apoptosis. Through a complementary, yet cyclic AMP-independent pathway, treprostinil activates PPARs, another mechanism that contributes to the anti-growth benefits of the prostacyclin class.
Status:
US Approved Rx
(2023)
Source:
NDA218010
(2023)
Source URL:
First approved in 2001
Source:
TRAVATAN by ALCON PHARMS LTD
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
(+)-Fluprostenol is the optically active enantiomer of fluprostenol. It is a potent and highly selective prostaglandin F2-alpha (FP) receptor agonist. (+)-Fluprostenol corrected corpora lutea persistence in the mares without significant clinical side effects. It was also an effective at inducing parturition in alpacas.
Status:
US Approved Rx
(2022)
Source:
NDA216472
(2022)
Source URL:
First approved in 1995
Source:
NDA020597
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Latanoprostene Bunod (LBN) is a topical ophthalmic therapeutic for the reduction of intraocular pressure (IOP) in patients with open-angle glaucoma or ocular hypertension. There is no cure for glaucoma and therapeutic management is predominantly focused on minimizing disease progression and clinical sequelae via the reduction and maintenance of appropriate target IOPs. Latanoprostene Bunod is thought to lower intraocular pressure via a dual mechanism of action since the medication is metabolized into two relevant moieties upon administration: latanoprost acid, and butanediol mononitrate. As a prostaglandin F2-alpha analog, the latanoprost acid moiety operates as a selective PGF2-alpha (FP) receptor agonist. Since FP receptors occur in the ciliary muscle, ciliary epithelium, and sclera the latanoprost acid moiety primarily acts in the uveoscleral pathway where it increases the expression of matrix metalloproteinases (MMPs) like MMP-1, -3, and -9 which promote the degradation of collagen types I, III, and IV in the longitudinal bundles of the ciliary muscle and surrounding sclera. The resultant extracellular matrix remodeling of the ciliary muscle consequently produces reduced outflow resistance via increased permeability and increased aqueous humor outflow through the uveoscleral route. Conversely, the butanediol mononitrate undergoes further metabolism to NO and an inactive 1,4-butanediol moiety. As a gas that can freely diffuse across plasma membranes, it is proposed that the relaxing effect of NO to induce reductions in the cell volume and contractility of vascular smooth muscle-like cells is dependent upon activation of the sGC/cGMP/PKG cascade pathway. NO released from butanediol mononitrate consequently enters the cells of the TM and an inner wall of SC, causing decreases in myosin light chain-2 phosphorylation, increased phosphorylation of large-conductance calcium-activated potassium (BKCa) channels, and a subsequent efflux of potassium ions through such BKCa channels. All of these changes serve to decrease the cell contractility and volume, as well as to rearrange the actin cytoskeleton of the TM and SC cells. These biomechanical changes ultimately allow for enhanced conventional outflow of aqueous humor.
Status:
US Approved Rx
(2008)
Source:
NDA022260
(2008)
Source URL:
First approved in 1995
Source:
NDA020444
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epoprostenol (marketed as FLOLAN, VELETRI) is a prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. Epoprostenol (PGI2, PGX, prostacyclin), a metabolite of arachidonic acid, is a naturally occurring prostaglandin with potent vasodilatory activity and inhibitory activity of platelet
aggregation. FLOLAN (epoprostenol sodium) for Injection is a sterile sodium salt formulated for intravenous (IV) administration. Epoprostenol has two major pharmacological actions: (1) direct vasodilation of pulmonary and systemic arterial vascular beds, and (2) inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. The effect of epoprostenol on heart rate in animals varies with dose. At low doses, there is vagally mediated brudycardia, but at higher doses, epoprostenol causes reflex tachycardia in response to direct vasodilation and hypotension. No major effects on cardiac conduction have been observed. Additional pharmacologic effects of epoprostenol in animals include bronchodilation, inhibition of gastric acid secretion, and decreased gastric emptying. No available chemical assay is sufficiently sensitive and specific to assess the in vivo human pharmacokinetics of epoprostenol. FLOLAN is indicated for the long-term intravenous treatment of primary pulmonary hypertension and pulmonary hypertension associated with the scleroderma spectrum of disease in NYHA Class III and Class IV patients who do not respond adequately to conventional therapy.
Status:
US Approved Rx
(2022)
Source:
ANDA215337
(2022)
Source URL:
First approved in 1979
Source:
NDA017989
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Carboprost is an analogue of naturally occurring prostaglandin F2alpha. Administered intramuscularly carboprost stimulates in the gravid uterus myometrial contractions similar to labor contractions at the end of a full term pregnancy. It is indicated for aborting pregnancy between the 13th and 20th weeks of gestation as calculated from the first day of the last normal menstrual period and for the treatment of postpartum hemorrhage due to uterine atony, which has not responded to conventional methods of management. The most frequent adverse reactions observed are related to its contractile effect on smooth muscle: vomiting, diarrhea, nausea, fever and flushing. Carboprost may augment the activity of other oxytocic agents. Concomitant use with other oxytocic agents is not recommended.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rivenprost (ONO-4819) is a potent and selective EP4 receptor agonist. This compound can increase bone formation by stimulating osteoblast differentiation and function, possibly by modulating mesenchymal cell differentiation. Rivenprost has also been studied for its potential to prevent bone loss (in osteoporosis) and stabilize bone implants. Combined with risedronate, rivenprost may be an effective treatment for osteoporosis. A phase II study evaluating rivenprost in ulcerative colitis was terminated in 2009.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Taprenepag isopropyl (also known as PF-04217329) a prodrug of CP-544326 (active acid metabolite), a potent and selective EP(2) receptor agonist. Taprenepag isopropyl was studied in a clinical trials phase II involving patients with primary open angle glaucoma. According to Pfizer’s pipelines in May 2011, the study was discontinued.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Evatanepag (CP-533,536) is a prostaglandin E2 EP2 receptor agonist. It stimulates new bone formation on trabecular, endocortical, and periosteal surfaces and enhances fracture healing. Evatanepag was under development with Pfizer as a bone formation stimulant for therapeutic use in the healing of fractures.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pimilprost (SM-10902) and its free acid, SM-10906 are new stable 3-oxa-methano prostaglandin (PG) I1 analogs, SM-10902 is a prodrug of SM-10906. SM-10906, but not SM-10902 was demonstrated to be an agonist for IP receptors. SM-10906 was shown to exert its anti-platelet and vasodilatory activities through the increase of the cAMP level. Pimilprost was being developed by Dainippon Sumitomo Pharma (formerly Sumitomo Pharmaceuticals) in Japan for the treatment of skin ulcers. In Japan, an NDA was filed for pimilprost and was awaiting registration. However, development appears to have been discontinued.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Piriprost (U-60, 257) is a structural analog of prostaglandin I2 (PGI2) with low IP receptor-mediated activity. It inhibits 5-LO (5-lipoxygenase). Piriprost inhibits the release of histamine and leukotrienes, implicating its role in inflammation and allergic responses. However, it was shown, that piriprost did not influence the airway responses after allergen in asthma. Nevertheless, even more, the drug was irritant to the respiratory tract than was placebo.