Stereochemistry | ABSOLUTE |
Molecular Formula | C26H40O5 |
Molecular Weight | 432.5928 |
Optical Activity | UNSPECIFIED |
Defined Stereocenters | 5 / 5 |
E/Z Centers | 1 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1CC[C@@H](O)CCC2=CC=CC=C2
InChI
InChIKey=GGXICVAJURFBLW-CEYXHVGTSA-N
InChI=1S/C26H40O5/c1-19(2)31-26(30)13-9-4-3-8-12-22-23(25(29)18-24(22)28)17-16-21(27)15-14-20-10-6-5-7-11-20/h3,5-8,10-11,19,21-25,27-29H,4,9,12-18H2,1-2H3/b8-3-/t21-,22+,23+,24-,25+/m0/s1
Molecular Formula | C26H40O5 |
Molecular Weight | 432.5928 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ABSOLUTE |
Additional Stereochemistry | No |
Defined Stereocenters | 5 / 5 |
E/Z Centers | 1 |
Optical Activity | UNSPECIFIED |
Latanoprost (free acid) is a metabolite of latanoprost which has been approved for use as an ocular hypotensive drug. Latanoprost is an isopropyl ester prodrug which is converted to the Latanoprost-acid by endogenous esterase enzymes. The free acid is pharmacologically active and is 200 times more potent than latanoprost as an agonist of the human recombinant Prostaglandin F receptor. However, the free Latanoprost-acid is more irritating and less effective than Latanoprost when applied directly to the eyes of human glaucoma patients.
Originator
Approval Year
Cmax
AUC
T1/2
Doses
AEs
Sourcing
Sample Use Guides
One drop in the affected eye(s) once daily in the evening.
Route of Administration:
Other
Latanoprost above concentrations of 3.125 mg/l can induce dose- and time-dependent morphological abnormality, growth retardation, viability decline, and plasma membrane permeability elevation of human corneal stromal (HCS) cells. Moreover, latanoprost can arrest the cell cycle of these cells at S phase and induce PS externalization, DNA fragmentation, and apoptotic body formation of the cells. Furthermore, latanoprost can induce activation of caspase-3, -8 and -9; disruption of MTP; downregulation of anti-apoptotic Bcl-2; upregulation of pro-apoptotic Bax; and cytoplasmic cytochrome c release