U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 451 - 460 of 21518 results

Isoproterenol (trade names Medihaler-Iso and Isuprel) is a medication used for the treatment of bradycardia (slow heart rate), heart block, and rarely for asthma. Isoproterenol is a non-selective β adrenoreceptor agonist and TAAR1 agonist that is the isopropylaminomethyl analog of epinephrine. Isoprenaline's effects on the cardiovascular system (non-selective) relate to its actions on cardiac β1 receptors and β2 receptors on smooth muscle within the tunica media of arterioles. Isoprenaline has positive inotropic and chronotropic effects on the heart. β2 adrenoceptor stimulation in arteriolar smooth muscle induces vasodilation. Its inotropic and chronotropic effects elevate systolic blood pressure, while its vasodilatory effects tend to lower diastolic blood pressure. The overall effect is to decrease mean arterial pressure due to the β2 receptors' vasodilation. The adverse effects of isoprenaline are also related to the drug's cardiovascular effects. Isoprenaline can produce tachycardia (an elevated heart rate), which predisposes patients to cardiac arrhythmias.
Status:
First approved in 1948
Source:
Sulfamylon by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Mafenide is a sulfonamide-type medication used as an antibiotic. It is indicated for use as an adjunctive topical antimicrobial agent to control bacterial infection when used under moist dressings over meshed autografts on excised burn wounds. Mafenide is not antagonized by pABA, serum, pus or tissue exudates, and there is no correlation between bacterial sensitivities to mafenide and to the sulfonamides. A single case of bone marrow depression and a single case of an acute attack of porphyria have been reported following therapy with mafenide acetate. Fatal hemolytic anemia with disseminated intravascular coagulation, presumably related to a glucose-6-phosphate dehydrogenase deficiency, has been reported following therapy with mafenide acetate. Other adverse reactions are: pain or burning sensation, rash and pruritis, erythema, skin maceration from prolonged wet dressings, facial edema, swelling, hives, blisters, eosinophilia.
The isolation and naming of ergotamine by Stoll occurred in 1925 but the complete elucidation of structure was not achieved until 1951, with synthesis following some 10 years later. Current sources of ergotamine include the isolation from field ergot and fermentation broth, as well as synthesis via coupling of (+)-lysergic acid with the appropriate synthetic peptidic moiety. Ergotamine was introduced into world commerce in 1921, and is currently marketed as its water soluble tartrate salt. Ergotamine is a partial agonist at various tryptaminergic receptors (including the serotonin receptor [5-HT2]) and at various α-adrenergic receptors in blood vessels and various smooth muscles. It is likely that the major activity of ergotamine and related alkaloids is one of agonism at the 5-HT1B/1D receptors, just as with the “triptan” antimigraine compounds. FDA-labeled indications for ergotamine tartrate are in the abortion or prevention of vascular headaches, such as migraine, migraine variant, cluster headache, and histaminic cephalalgia.
Status:
First approved in 1947
Source:
Chloroguanide by Squibb
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Proguanil is a prophylactic antimalarial drug, which works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells. Proguanil in combination with atovaquone are marked under the brand name malarone, which is indicated for the treatment of acute, uncomplicated P. falciparum malaria and for the prophylaxis of Plasmodium falciparum malaria, including in areas where chloroquine resistance has been reported. Atovaquone and proguanil, interfere with 2 different pathways involved in the biosynthesis of pyrimidines required for nucleic acid replication. Atovaquone is a selective inhibitor of parasite mitochondrial electron transport. Proguanil hydrochloride primarily exerts its effect by means of the metabolite cycloguanil, a dihydrofolate reductase inhibitor. Inhibition of dihydrofolate reductase in the malaria parasite disrupts deoxythymidylate synthesis. Recently were done experiments, which confirmed the hypothesis that proguanil might act on another target than dihydrofolate reductase. In addition, was made conclusion, that effectiveness of malarone was due to the synergism between atovaquone and proguanil and may not require the presence of cycloguanil.
Ascorbic acid (vitamin C) is a water-soluble vitamin. It occurs as a white or slightly yellow crystal or powder with a slight acidic taste. Ascorbic acid is an electron donor, and this property accounts for all its known functions. As an electron donor, ascorbic acid is a potent water-soluble antioxidant in humans. Ascorbic acid acts as an antioxidant under physiologic conditions exhibiting a cross over role as a pro-oxidant in pathological conditions. Oxidized ascorbic acid (dehydroascorbic acid (DHA) directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas ascorbic acid did not have this effect. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling. Vitamin C is recommended for the prevention and treatment of scurvy. Its parenteral administration is desirable for patients with an acute deficiency or for those whose absorption of orally ingested ascorbic acid (vitamin c) is uncertain. Symptoms of mild deficiency may include faulty bone and tooth development, gingivitis, bleeding gums, and loosened teeth. Febrile states, chronic illness, and infection (pneumonia, whooping cough, tuberculosis, diphtheria, sinusitis, rheumatic fever, etc.) increase the need for ascorbic acid (vitamin c). Hemovascular disorders, burns, delayed fracture and wound healing are indications for an increase in the daily intake.
Pyridoxine is the 4-methanol form of vitamin B6 and is converted to pyridoxal 5-phosphate in the body. Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. Used for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy.
Status:
First approved in 1947

Class (Stereo):
CHEMICAL (ABSOLUTE)



Panthenol (pantothenol) is an alcohol form of the B5 vitamin pantothenic acid. It easily penetrates the skin retaining water and is a humectant, emollient and moisturizer. Panthenol mitigates signs of inflammation and stimulates epithelization. Panthenol comes in two enantiomers, D and L. Only D-panthenol (dexpanthenol) is biologically active, however both forms have moisturizing properties. Because of the ability to attract and hold moisture panthenol is used in skincare products as a humectant. It also has a role as provitamin (called pro-vitamin B5) and is used as a vitamin supplement in complex ( M.V.I. ADULT injection, Hospira Worldwide, Inc.) and alone, and as a cholinergic drug. Panthenol is a highly viscous transparent liquid at room temperature, but salts of pantothenic acid (sodium pantothenate) are powders (typically white). It is soluble in water, alcohol, propylene glycol, ether and chloroform, and slightly soluble in glycerin. Panthenol mixes readily with many different types of ingredients, making it a versatile ingredient to be used in formulas because it improves skin’s barrier function and maintains the proliferation of fibroblasts. In organisms it is quickly oxidized to pantothenate (pantothenic acid). Defficiency of Vitamin B5 results in many dermatological disorder. Due to the fact that only D-Panthenol is converted to Vitamin B5 and not L-Panthenol, the racemic mixture of D- and L- panthenol (DL-panthenol) has only half of the physiological activity of the D-Panthenol. These include stimulation of epithelisation, wound healing effect and anti-infl ammatory effect. Panthenol is FDA approved for cosmetic use and comes either in D form, or as a racemic mixture. It is also in the FDA list of over-the-counter drug products that are not generally recognized as safe and effective or are misbranded: as "Insect Bite and Sting Drug Products" and "Poison Ivy, Poison Oak, and Poison Sumac Drug Products".
Dihydroergotamine (DHE) is a semisynthetic, hydrogenated ergot alkaloid, synthesized by reducing an unsaturated bond in ergotamine. Dihydroergotamine was originally envisaged as an antihypertensive agent, but it was later shown to be highly effective in treating migraine. Dihydroergotamine was first used to treat migraine in 1945 by Horton, Peters, and Blumenthal at the Mayo Clinic. In 1986, Raskin and Callaham reconfirmed the effectiveness of DHE for both intermittent and intractable migraine. The use of DHE was reviewed by Scott in 1992. In 1997, a nasal spray version was approved for use in migraine. Dihydroergotamine is indicated for the acute treatment of migraine headaches with or without aura and the acute treatment of cluster headache episodes. Dihydroergotamine binds with high affinity to 5-HT1Dα and 5-HT1Dβ receptors. It also binds with high affinity to serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors, noradrenaline α2A, α2B and α, receptors, and dopamine D2L and D3 receptors. The therapeutic activity of dihydroergotamine in migraine is generally attributed to the agonist effect at 5-HT1D receptors. Two current theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine. One theory suggests that activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache. The alternative hypothesis suggests that activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of proinflammatory neuropeptide release.
Dimercaprol (2, 3-dimercapto-1-propanol) or British anti-Lewisite (BAL), is a colorless or almost colorless liquid chelating agent having a disagreeable, mercaptan-like odor. Dimercaprol was developed at Oxford University during World War II as a means of treating and reversing poisoning from Lewisite, an arsenical gas used in chemical warfare (and thus initially called British anti-Lewisite [BAL]). The sulfhydryl groups of dimercaprol form complexes with certain heavy metals thus preventing or reversing the metallic binding of sulfhydryl-containing enzymes. Parenterally administered dimercaprol is used to treat arsenic, gold, copper and mercury poisoning. It is indicated in acute lead poisoning when used concomitantly with edetate clcium disodium. Dimercaprol is occasionally used in the initial treatment of severe, symptomatic Wilson disease, but generally for a short time only.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (EPIMERIC)


Conditions:

Homatropine methylbromide or Methylhomatropine bromide is a quaternary ammonium salt of methylhomatropine. It is a peripherally acting anticholinergic medication that inhibits muscarinic acetylcholine receptors and thus the parasympathetic nervous system. Certain preparations of drugs such as hydrocodone are mixed with a small, sub-therapeutic amount of homatropine methylbromide to discourage intentional overdose.