U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 381 - 390 of 431 results

Alitretinoin, or 9-cis-retinoic acid, is a form of vitamin A. It is also used in medicine as an antineoplastic (anti-cancer) agent developed by Ligand Pharmaceuticals. Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposi's sarcoma. Alitretinoin inhibits the growth of Kaposi's sarcoma (KS) cells in vitro. Alitretinoin binds to and activates all known intracellular retinoid receptor subtypes (RARa, RARb, RARg, RXRa, RXRb and RXRg). Once activated these receptors function as transcription factors that regulate the expression of genes that control the process of cellular differentiation and proliferation in both normal and neoplastic cells. In the United States, topical alitretinoin (in the form of a gel; trade name Panretin) is indicated for the treatment of skin lesions in AIDS-related Kaposi's sarcoma.
Status:
First approved in 1967
Source:
PROPRANOLOL HYDROCHLORIDE by BAXTER HLTHCARE CORP
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Propranolol is a nonselective, beta-adrenergic receptor-blocking agent possessing no other autonomic nervous system activity. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. Among the factors that may be involved in contributing to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable. In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity. Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain. The mechanism of the anti-migraine effect of propranolol has not been established. Propranolol is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Also is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris; for the prophylaxis of common migraine headache. In addition, is used to improve NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis. Due to the high penetration across the blood–brain barrier, propranolol causes sleep disturbances such as insomnia and vivid dreams, and nightmares. Dreaming (rapid eye movement sleep, REM) was reduced and increased awakening.
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Glycopyrrolate is a synthetic anticholinergic agent with a quaternary ammonium structure. Glycopyrrolate is a muscarinic competitive antagonist used as an antispasmodic, in some disorders of the gastrointestinal tract, and to reduce salivation with some anesthetics. Glycopyrrolate binds competitively to the muscarinic acetylcholine receptor. Like other anticholinergic (antimuscarinic) agents, it inhibits the action of acetylcholine on structures innervated by postganglionic cholinergic nerves and on smooth muscles that respond to acetylcholine but lack cholinergic innervation. These peripheral cholinergic receptors are present in the autonomic effector cells of smooth muscle, cardiac muscle, the sinoatrial node, the atrioventricular node, exocrine glands and, to a limited degree, in the autonomic ganglia. Thus, it diminishes the volume and free acidity of gastric secretions and controls excessive pharyngeal, tracheal, and bronchial secretions. Glycopyrrolate antagonizes muscarinic symptoms (e.g., bronchorrhea, bronchospasm, bradycardia, and intestinal hypermotility) induced by cholinergic drugs such as the anticholinesterases. The highly polar quaternary ammonium group of glycopyrrolate limits its passage across lipid membranes, such as the blood-brain barrier, in contrast to atropine sulfate and scopolamine hydrobromide, which are highly non-polar tertiary amines which penetrate lipid barriers easily. Glycopyrrolate is marketed under the brand names Robinul, Robinul Forte, Cuvposa. In October 2015, glycopyrrolate was approved by the FDA for use as a standalone treatment for Chronic obstructive pulmonary disease (COPD), as Seebri Neohaler.
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Histamine is a depressor amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and a centrally acting neurotransmitter. Phosphate salt of jistamine was used as a diagnostic aid for evaluation of gastric acid secretory function. In addition, this compound is used as a positive control in evaluation of allergenic (immediate hypersensitivity or "Type I") skin testing. In addition, histamine is being studied for treatment of multiple sclerosis. It was approved, that histamine physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The H3R is an auto receptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Methylene blue, also known as methylthioninium chloride, is a medication from WHO's list of essential medicines. Upon administration, methylene blue is converted to leukomethylene blue by erythrocyte methemoblobin reductase in the presence of NADPH. Leukomethylene blue than reduces methemoglobin to oxyhemoglobin, thus restoring oxygen carrying capacity of the blood. Methylene blue is also used as a dye for various diagnostic procedures, for treatment of ifosfamide toxicity and for in vitro staining. Historically, it was used as a photosensitizer for photodynamic therapy for topical treatment of dermatologic or mucocutaneous infections, as an antidote for cyanide poisoning, but these applications are no longer approved. Methylene blue is investigated in clinical trials for treatment of septic shock and Alzheimer's disease.
Status:
First marketed in 1921
Source:
Arsenic Trioxide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Arsenic trioxide (ATO) is used to treat acute promyelocytic leukemia in people who have not been helped by other types of chemotherapy or whose condition has improved but then worsened following treatment with other types of chemotherapy. Arsenic trioxide acts through activation of Jun N-terminal kinase (JNK), activator protein-1, and inhibition of dual-specificity phosphatases. Although the exact mechanisms under which ATO exerts its therapeutic effect in acute promyelocytic leukemia cancer cells are not well elucidated. It was shown that apoptotic mechanisms involved the induction of phosphatidylserine externalization, caspase-3 activation, and nucleosomal DNA fragmentation. Adverse reactions described are leukocytosis, nausea, vomiting, diarrhea, and abdominal pain, fatigue, edema, hyperglycemia, dyspnea, cough, rash or itching, headaches, and dizziness.
Betaine is a methyl derivative of glycine first isolated from the juice of sugar beets. Betaine is found in many common foods, but concentrated significantly in beets, spinach, wheat foods, and shellfish. In addition, betaine can be synthesized within the human body. Betaine participates in the methionine cycle, which produces vital biomolecules including proteins, hormones, phospholipids, polyamines, and nutrients. Betaine is used as a dietary supplement and has a beneficial effect on the human health. In the USA, FDA approved a betaine-containing drug Cystadane for the treatment of homocystinuria. The drug acts as a methyl group donor in the remethylation of homocysteine to methionine.
Status:
US Approved OTC
Source:
21 CFR 333.110(a) first aid antibiotic:ointment bacitracin
Source URL:
First marketed in 1921

Class (Stereo):
CHEMICAL (ACHIRAL)



Bacitracin is a polypeptide antibiotic produced by Bacillus subtilis and Bacillus licheniformis. Bacitracin in combination with neomycin and polymyxin B is indicated for the treatment of many bacterial diseases. The antibacterial properties of bacitracin are mediated by its binding to C55-isoprenyl pyrophosphate, resulting in inhibition of cell wall biosynthesis.

Showing 381 - 390 of 431 results