U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 68 results

Status:
Possibly Marketed Outside US
Source:
Canada:ETHYL ACETATE
Source URL:
First approved in 1964
Source:
Stop-A-Leak by H. W. Naylor Company Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Ethyl acetate is a widely used synthetic solvent. It is used in cosmetics and considered to be safe. Ethyl acetate is cited as a direct and indirect food additive as detailed in the Code of Federal Regulations. Ethyl acetate is generally recognized as safe (GRAS) for use as a synthetic flavor and/or adjuvant; limitations on concentrations of use were not specified. Ethyl acetate was tested for in vitro in human breast cancer cell line and demonstrated considerable cytotoxicity.
Status:
Possibly Marketed Outside US
Source:
Kanamycin, amphomycin, and hydrocortisone ointment
Source URL:

Class (Stereo):
CHEMICAL (EPIMERIC)


Amphomycin is a natural antibacterial lipopeptide initially reported by researchers at Bristol-Myers in 1953 from Streptomyces canus. Lipopeptides are cyclic depsipeptides with a peptidyl side chain capped with a saturated alkyl tail. They preferentially target Gram-positive bacteria and may be useful against drug resistant strains. Amphomycin is closely related to a number of "lost" antibiotics, such as aspartocin, crystallomycin, glumamycin, friulimicin, laspartocin, tsushimycin and zaomycin. Interest in amphomycin was re-awakened with the discovery of friulimicin activity against antibiotic resistant strains. Whole cell analysis by solid-state NMR indicates that in vivo mode of action for amphomycin is complex. While the downstream effect of purine biosynthesis inhibition by amphomycin is unknown, presumably it would directly alter the overall metabolism of bacteria.
mixture
Status:
First approved in 1940
Source:
Ephynal Acetate by Hoffmann-La Roche
Source URL:

Class:
MIXTURE



It is known that Vitamin E, traditionally known as α¬ tocopherol, is a mixture of eight different compounds, four tocopherols and four tocotrienols, each one being designated as α, β, γ and δ forms. The two groups differ in the hydrophobic tridecyl side chain which is saturated (phytyl) in tocopherols and unsaturated having three double bonds (geranyl) in tocotrienols. During the last few years, it has been found that all the eight forms are biologically active and perform specific functions. Clinical research has shown that mixture of tocotrienols and tocopherols offer synergistic protective action against heart ailments and cancer that is not exclusively offered by α¬tocopherol. The other advantage of mixed tocopherols and tocotrienols is their role in slowing down aging. Diseases like diabetes 1 and 2, autoimmune diseases, bacterial and viral infections, Alzheimer disease, fungal (Candida) infections are prevented by these compounds. It helps in the maintenance of bones, muscles, eyes (vision), memory, sleep, lungs, infertility, skin and wrinkles. Although all forms of Vitamin E exhibit antioxidant activity, it is known that the antioxidant activity of vitamin E is not sufficient to explain the vitamin's biological activity. Vitamin E's anti-atherogenic activity involves the inhibition of the oxidation of LDL and the accumulation of oxLDL in the arterial wall. Vitamin E's antithrombotic and anticoagulant activities involves the downregulation of the expression of intracellular cell adhesion molecule(ICAM)-1 and vascular cell adhesion molecule(VCAM)-1 that lowers the adhesion of blood components to the endothelium. Its antioxidant effects explain the neuroprotective effects of vitamin E. The immunomodulatory effects of Vitamin E have been demonstrated in vitro, where alpha-tocopherol increases mitogenic response of T lymphocytes from aged mice. The mechanism of this response by vitamin E is not well understood, however it has been suggested that vitamin E itself may have mitogenic activity independent of its antioxidant activity. The mechanism of action of vitamin E's antiviral effects (primarily against HIV-1) involves its antioxidant activity. Vitamin E reduces oxidative stress, which is thought to contribute to HIV-1 pathogenesis, as well as to the pathogenesis of other viral infections. Vitamin E also affects membrane integrity and fluidity and, since HIV-1 is a membraned virus, altering membrane fluidity of HIV-1 may interfere with its ability to bind to cell-receptor sites, thus decreasing its infectivity.
mixture
Status:
US Approved OTC
Source:
21 CFR 333.110(d) first aid antibiotic:ointment neomycin sulfate
Source URL:
First approved in 1951
Source:
Mycifradin by Upjohn
Source URL:

Class:
MIXTURE



Neomycin is an aminoglycoside antibiotic found in many topical medications such as creams, ointments, and eye drops. In vitro tests have demonstrated that neomycin is bactericidal and acts by inhibiting the synthesis of protein in susceptible bacterial cells. It is effective primarily against gram-negative bacilli but does have some activity against gram-positive organisms. Neomycin is active in vitro against Escherichia coli and the Klebsiella-Entero. Topical uses include treatment for superficial eye infections caused by susceptible bacteria (used in combination with other anti-infective), treatment of otitis externa caused by susceptible bacteria, treatment or prevention of bacterial infections in skin lesions, and use as a continuous short-term irrigant or rinse to prevent bacteriuria and gram negative rod bacteremia in bacteriuria patients with indwelling catheters. May be used orally to treat hepatic encephalopathy, as a perioperative prophylactic agent, and as an adjunct to fluid and electrolyte replacement in the treatment of diarrhea caused to enter pathogenic E. coli (EPEC). Neomycin sulfate has been shown to be effective adjunctive therapy in hepatic coma by reduction of the ammonia forming bacteria in the intestinal tract. The subsequent reduction in blood ammonia has resulted in neurologic improvement. To reduce the development of drug-resistant bacteria and maintain the effectiveness of Neomycin Sulfate Oral Solution and other antibacterial drugs, susceptible bacteria should use Neomycin Sulfate Oral Solution only to treat or prevent infections that are proven or strongly suspected to be caused. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. Neomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site near nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes
Polymyxin B is a lipopeptide antibiotic isolated from Bacillus polymyxa. Its basic structure consists of a polycationic peptide ring and a tripeptide side chain with a fatty acid tail. Polymyxin B is a mixture of at least four closely related components, polymyxin B1 to B4, with polymyxin B1 and B2 being the two major components. Polymyxin B acts on Gram-negative bacteria by interacting with lipopolysaccharide (LPS) of the outer membrane and destabilizing it. Polymyxin B is indicated for the treatment of many bacterial diseases such as meningeal infections, urinary tract infections and bacteremia.
mixture
Status:
US Approved OTC
Source:
21 CFR 333.110(a) first aid antibiotic:ointment bacitracin
Source URL:
First marketed in 1921

Class:
MIXTURE



Bacitracin is a polypeptide antibiotic produced by Bacillus subtilis and Bacillus licheniformis. Bacitracin in combination with neomycin and polymyxin B is indicated for the treatment of many bacterial diseases. The antibacterial properties of bacitracin are mediated by its binding to C55-isoprenyl pyrophosphate, resulting in inhibition of cell wall biosynthesis.
mixture
Status:
US Previously Marketed
Source:
21 CFR 310.527(a) hair loss prevention polysorbate 60
Source URL:
First approved in 1938
Source:
Belladonna and Opium by Bryant Ranch Prepack
Source URL:

Class:
MIXTURE

mixture
Status:
Possibly Marketed Outside US
Source:
NCT03237182: Phase 4 Interventional Terminated Tuberculosis, Multidrug-Resistant
(2017)
Source URL:
First approved in 2022
Source:
Kanamycin Sulfates by KDG Impresa LLC, Aqion
Source URL:

Class:
MIXTURE



Kanamycin (a mixture of kanamycin A, B and C) is an aminoglycoside bacteriocidal antibiotic, available in oral, intravenous, and intramuscular forms, and used to treat a wide variety of infections. It is effective against Gram-negative bacteria and certain Gram-positive bacteria. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Serious side effects include tinnitus or loss of hearing, toxicity to kidneys, and allergic reactions to the drug. Mixing of an aminoglycoside with beta-lactam-type antibiotics (penicillins or cephalosporins) may result in a significant mutual inactivation. Even when an aminoglycoside and a penicillin-type drug are administered separately by different routes, a reduction in aminoglycoside serum half-life or serum levels has been reported in patients with impaired renal function and in some patients with normal renal function.
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
Status:
US Approved OTC
Source:
21 CFR 349.12(d)(4) ophthalmic:demulcents polysorbate 80
Source URL:
First approved in 1949
Source:
Olothorb by Merck Sharp & Dohme
Source URL:

Class:
POLYMER


Polysorbate 80 is a nonionic surfactant and emulsifier often used in foods and cosmetics. Polysorbate 80 is an excipient that is used to stabilize aqueous formulations of medications for parenteral administration, and used as an emulsifier in the manufacture of the popular antiarrhythmic amiodarone. Polysorbate 80 is also used as an excipient in some European and Canadian influenza vaccines. Influenza vaccines contain 25 μg of polysorbate 80 per dose. Polysorbate 80 is also used in the culture of Mycobacterium tuberculosis in Middlebrook 7H9 broth. It is also used as an emulsifier in the estrogen-regulating drug Estrasorb. In Europe and America, people eat about 100 mg of polysorbate 80 in foods per day on average. Polysorbate 80 has not been found to be carcinogenic. Rats fed with diets containing up to 5% polysorbate 80 by volume for 12 weeks showed no toxic effects.