{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
dextroamphetamine
to a specific field?
Status:
US Previously Marketed
First approved in 1955
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
DEXTROAMPHETAMINE TANNATE is a salt of dextroamphetamine, amphetamine enantiomer. It is used as CNS stimulant in the treatment of attention deficit hyperactivity disorder.
Status:
US Previously Marketed
Source:
VASOCORT HYDROXYAMPHETAMINE HYDROBROMIDE by SKF
(1961)
Source URL:
First marketed in 1935
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydroxyamphetamine is a derivative of amphetamines. Hydroxyamphetamine is intended mainly as local eye drops for diagnostic purposes. It is indirect sympathomimetic agent which cause dilation of the eye pupil before diagnostic test. Among the minor side effects from its use are: change in color vision, difficulty seeing at night, dry mouth, headache, increased sensitivity of eyes to sunlight, muscle stiffness or tightness and temporary stinging in the eyes. The main use of hydroxyamphetamines as eye drops is the diagnosis of Horner's syndrome which is characterized by nerve lesions. Hydroxyamphetamine hydrobromide is a component of FDA approved brand drug - Paremyd sterile ophthalmic solution (Hydroxyamphetamine hydrobromide, USP 1.0%, Tropicamide, USP 0.25%). Hydroxyamphetamine is an indirect-acting sympathomimetic, while tropicamide acts as a parasympatholytic.
Status:
US Previously Marketed
Source:
Benzaldehyde U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Benzaldehyde is the simplest and possibly the most industrially useful member of the family of aromatic aldehydes. Benzaldehyde exists in nature, primarily in combined forms such as a glycoside in almond, apricot, cherry, and peach seeds. The characteristic benzaldehyde odor of oil of bitter almond occurs because of trace amounts of free benzaldehyde formed by hydrolysis of the glycoside amygdalin. Benzaldehyde is a versatile intermediate because of its reactive aldehyde hydrogen, its carbonyl group, and the benzene ring. Benzaldehyde is formed from phenylpyruvic acid, derived by the aminotransferase activity on phenylalanine, in the presence of high levels of Mn2+, and contributes to the generation of flavor compound during cheese ripening. Benzaldehyde is a synthetic flavoring substance, sanctioned by the U.S. Food and Drug Administration (FDA) to be generally recognized as safe (GRAS) for foods. Benzaldehyde is also recognized as safe for use as a bee repellant in the harvesting of honey. Benzaldehyde's most important use is in organic synthesis, where it is the raw material utilized to produce various aldehydes. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde.
Status:
Possibly Marketed Outside US
First approved in 1992
Source:
21 CFR 331
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Adipic acid has been incorporated into controlled-release formulation matrix tablets to obtain a pH-independent release for both weakly basic and weakly acidic drugs. It has also been incorporated into the polymeric coating of hydrophilic monolithic systems to modulate the intragel pH, resulting in zero-order release of hydrophilic drugs. The disintegration at intestinal pH of the enteric polymer shellac has been reported to improve when adipic acid was used as a pore-forming agent without affecting release in the acidic media. Adipic acid is used to make bisobrin an antifibrinolytic.
Status:
Possibly Marketed Outside US
Source:
NCT01227616: Phase 4 Human clinical trial Completed Anemia, Iron-Deficiency/etiology
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Glucaric acid is a non-toxic, naturally occurring compound, which is found in small amounts in plants and mammals, including humans. Salts of glucaric acid have potent antiproliferative properties in vivo. The risk of cancer development can be reduced by ingesting food rich in glucaric acid or self-medication with its salts. Glucaric acid inhibits bacterial beta-glucuronidase, thus increasing the excretion of conjugated xenobiotic compounds and decreasing activity of harmful substances. Inhibition of beta-glucuronidase ultimately results in potentially decreasing the risk of carcinogenesis. Calcium salt of the acid demonstrated anti-cancer activity in patients with breast cancer (phase I clinical trial) and in preclinical models of liver, lung, colon and skin cancers. Calcium-D-glucarate is being marketed as a dietary supplement.
Status:
US Approved Rx
(2023)
Source:
ANDA214484
(2023)
Source URL:
First marketed in 1937
Source:
Dexedrine by Smith Kline French
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED). After oral administration, lisdexamfetamine dimesylate is rapidly absorbed from the gastrointestinal tract and converted to dextroamphetamine, which is responsible for the drug’s activity. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. Most common adverse reactions in children, adolescents and/or adults with ADHD were anorexia, anxiety, decreased appetite, decreased weight, diarrhea, dizziness, dry mouth, irritability, insomnia, nausea, upper abdominal pain, and vomiting. Agents that alter urinary pH can alter blood levels of amphetamine. Acidifying agents decrease amphetamine blood levels, while alkalinizing agents increase amphetamine blood levels. Needs to adjust Lisdexamfetamine dosage accordingly.