{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Agent Affecting Digestive System or Metabolism[C78276]" in comments (approximate match)
Status:
US Approved Rx
(2023)
Source:
ANDA207209
(2023)
Source URL:
First approved in 1997
Source:
PRANDIN by GEMINI LABS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Repaglinide is antidiabetic drug, which is sold under several names including, Prandin in the U.S., Surepost in Japan and GlucoNorm in Canada. It is an oral blood glucose-lowering drug of the meglitinide class used in the management of type 2 diabetes mellitus (also known as non-insulin dependent diabetes mellitus or NIDDM). Repaglinide lowers blood glucose levels by stimulating the release of insulin from the pancreas. This action is dependent upon functioning beta (ß) cells in the pancreatic islets. Insulin secretion by pancreatic β cells is partly controlled by cellular membrane potential. Membrane potential is regulated through an inverse relationship between the activity of cell membrane ATP-sensitive potassium channels (ABCC8) and extracellular glucose concentrations. Extracellular glucose enters the cell via GLUT2 (SLC2A2) transporters. Once inside the cell, glucose is metabolized to produce ATP. High concentrations of ATP inhibit ATP-sensitive potassium channels causing membrane depolarization. High glucose concentrations cause ATP-sensitive potassium channels to close resulting in membrane depolarization and opening of L-type calcium channels. The influx of calcium ions stimulates calcium-dependent exocytosis of insulin granules. Repaglinide closes ATP-dependent potassium channels in the ß-cell membrane by binding at characterizable sites. This potassium channel blockade depolarizes the ß-cell, which leads to an opening of calcium channels. The resulting increased calcium influx induces insulin secretion. The ion channel mechanism is highly tissue selective with low affinity for heart and skeletal muscle. Repaglinide is completely metabolized by oxidative biotransformation and direct conjugation with glucuronic acid after either an IV or oral dose.
Status:
US Approved Rx
(2016)
Source:
NDA205879
(2016)
Source URL:
First approved in 1995
Source:
GLUCOPHAGE by EMD SERONO INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines.
Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Status:
US Approved Rx
(2017)
Source:
ANDA202294
(2017)
Source URL:
First approved in 1995
Source:
NDA020406
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Dexlansoprazole (trade names Kapidex, Dexilant) is a proton pump inhibitor (PPI) that is marketed by Takeda Pharmaceuticals for the treatment of erosive esophagitis and gastro-oesophageal reflux disease. Dexlansoprazole is used to heal and maintain healing of erosive esophagitis and to treat heartburn associated with gastroesophageal reflux disease (GERD). It lasts longer than lansoprazole, to which it is chemically related, and needs to be taken less often. Dexlansoprazole is supplied for oral administration as a dual delayed-release formulation in capsules and orally disintegrating tablets. The capsules and tablets contain dexlansoprazole in a mixture of two types of enteric-coated granules with different pH-dependent dissolution profiles. The most significant adverse reactions (≥2%) reported in clinical trials were diarrhea, abdominal pain, nausea, upper respiratory tract infection, vomiting, and flatulence.
Status:
US Approved Rx
(2012)
Source:
ANDA202271
(2012)
Source URL:
First approved in 1995
Source:
PRECOSE by BAYER HLTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acarbose is an anti-diabetic drug used to treat type 2 diabetes mellitus and, in some countries, prediabetes. Acarbose is an oligosaccharide which is obtained from fermentation processes of a microorganism, Actinoplanes utahensis, and is chemically known as O-4,6-dideoxy¬ 4-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino]¬ α-D-glucopyranosyl-(1 → 4)-O-α-D-glucopyranosyl-(1 → 4)-D-glucose. Acarbose is a complex oligosaccharide that delays the digestion of ingested carbohydrates, thereby resulting in a smaller rise in blood glucose concentration following meals. As a consequence of plasma glucose reduction, PRECOSE (acarbose tablets) reduces levels of glycosylated hemoglobin in patients with type 2 diabetes mellitus. Systemic non-enzymatic protein glycosylation, as reflected by levels of glycosylated hemoglobin, is a function of average blood glucose concentration over time. In contrast to sulfonylureas, PRECOSE does not enhance insulin secretion. The antihyperglycemic action of acarbose results from a competitive, reversible inhibition of pancreatic alpha-amylase and membrane-bound intestinal alpha-glucoside hydrolase enzymes. Pancreatic alpha-amylase hydrolyzes complex starches to oligosaccharides in the lumen of the small intestine, while the membrane-bound intestinal alpha-glucosidases hydrolyze oligosaccharides, trisaccharides, and disaccharides to glucose and other monosaccharides in the brush border of the small intestine. In diabetic patients, this enzyme inhibition results in a delayed glucose absorption and a lowering of postprandial hyperglycemia. Because its mechanism of action is different, the effect of PRECOSE to enhance glycemic control is additive to that of sulfonylureas, insulin or metformin when used in combination. In addition, PRECOSE diminishes the insulinotropic and weight-increasing effects of sulfonylureas. Acarbose has no inhibitory activity against lactase and consequently would not be expected to induce lactose intolerance.
Status:
US Approved Rx
(2009)
Source:
ANDA077911
(2009)
Source URL:
First approved in 1995
Source:
AMARYL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Glimepiride, like glyburide and glipizide, is a "second-generation" sulfonylurea agents. Glimepiride is used with diet to lower blood glucose by increasing the secretion of insulin from pancreas and increasing the sensitivity of peripheral tissues to insulin. The mechanism of action of glimepiride in lowering blood glucose appears to be dependent on stimulating the release of insulin from functioning pancreatic beta cells, and increasing sensitivity of peripheral tissues to insulin. Glimepiride likely binds to ATP-sensitive potassium channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Membrane depolarization stimulates calcium ion influx through voltage-sensitive calcium channels. This increase in intracellular calcium ion concentration induces the secretion of insulin. Glimepiride is used for concomitant use with insulin for the treatment of noninsulin-dependent (type 2) diabetes mellitus. Glimepiride`s original trade name is Amaryl.
Status:
US Approved Rx
(2013)
Source:
NDA203389
(2013)
Source URL:
First approved in 1994
Source:
NDA020392
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Status:
US Approved Rx
(2018)
Source:
ANDA211080
(2018)
Source URL:
First approved in 1993
Source:
LIPIDIL by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Fenofibrate is a drug of the fibrate class. It is mainly used to reduce cholesterol levels in people at risk of cardiovascular disease. It’s used as adjunctive therapy to diet to reduce elevated LDL-C, Total-C,Triglycerides and Apo B, and to increase HDL-C in adult patients with primary hypercholesterolemia or mixed dyslipidemia (Fredrickson Types IIa and IIb). Fenofibrate is a fibric acid derivative, a prodrug comprising fenofibric acid linked to an isopropyl ester. Fenofibrate is rapidly hydrolyzed after oral ingestion to its pharmacologically active form, fenofibric acid. The effects of fenofibric acid seen in clinical practice have been explained in vivo in transgenic mice and in vitro in human hepatocyte cultures by the activation of peroxisome proliferator activated receptor α (PPARα). It lowers lipid levels by activating peroxisome proliferator-activated receptor alpha (PPARα). PPARα activates lipoprotein lipase and reduces apoprotein CIII (an inhibitor of lipoprotein lipase activity), which increases lipolysis and elimination of triglyceride-rich particles from plasma. The resulting fall in triglycerides produces an alteration in the size and composition of LDL from small, dense particles (which are thought to be atherogenic due to their susceptibility to oxidation), to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. PPARα also increases apoproteins AI and AII, reduces VLDL- and LDL-containing apoprotein B, and increases HDL-containing apoprotein AI and AII.Fenofibrate also reduces serum uric acid levels in hyperuricemic and normal individuals by increasing the urinary excretion of uric acid. Fenofibrate also has an off-label use as uricosuric therapy in people who have gout.
Status:
US Approved Rx
(2022)
Source:
ANDA216096
(2022)
Source URL:
First approved in 1989
Source:
NDA019810
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
US Approved Rx
(2020)
Source:
ANDA211752
(2020)
Source URL:
First approved in 1989
Source:
NDA021153
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2016)
Source:
ANDA204068
(2016)
Source URL:
First approved in 1989
Source:
PRILOSEC by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Esomeprazole strontium is a proton pump inhibitor. It suppresses gastric acid secretion by specific inhibition H+/K+ ATPase in the gastric parietal cell. The S- and R-isomers of omeprazole are protonated and converted in the acidic compartment of the parietal cell forming the active inhibitor, the achiral sulphenamide. By acting specifically on the proton pump, esomeprazole blocks the final step in acid production, thus reducing gastric acidity. The drug is indicated for the treatment of gastroesophageal reflux disease, reduction the risk of NSAID-associated gastric ulcer, eradication of H.pylori, and pathological hypersecretory conditions.