{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Agent Affecting Digestive System or Metabolism[C78276]" in comments (approximate match)
Status:
US Approved Rx
(2011)
Source:
ANDA090618
(2011)
Source URL:
First approved in 1988
Source:
AXID by SMITHKLINE BEECHAM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Nizatidine, chemically N-[2-[[[2- [(dimethylamino)methyl]-4-thiazolyl]methyl]thio]ethyl]-N’ -methyl-2-nitro-1,1-ethenediamine, is a histamine H2-receptor antagonist.
Nizatidine reduced gastric acid secretion for up to 8 h suggesting that this compound could be used in with a once or twice daily dosage regime. Nizatidine was rapidly and well-absorbed orally, was widely distributed in tissues and the majority of the dose was excreted in the urine within 24 h. Nizatidine is indicated for duodenal and gastric ulcer as well as for the treatment of endoscopically diagnosed esophagitis, including erosive and ulcerative esophagitis, and associated heartburn due to gastroesophageal reflux disease.
Status:
US Approved Rx
(2022)
Source:
ANDA214849
(2022)
Source URL:
First approved in 1987
Source:
NDA019594
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.
Status:
US Approved Rx
(2019)
Source:
ANDA210201
(2019)
Source URL:
First approved in 1986
Source:
NDA019268
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Conditions:
Misoprostol is a prostaglandin E1 (PGE1) analogue used for the treatment and prevention of stomach ulcers. When administered, misoprostol stimulates increased secretion of the protective mucus that lines the gastrointestinal tract and increases mucosal blood flow, thereby increasing mucosal integrity. It is sometimes co-prescribed with non-steroidal anti-inflammatory drugs (NSAIDs) to prevent the occurrence of gastric ulceration, a common adverse effect of the NSAIDs. Misoprostol seems to inhibit gastric acid secretion by a direct action on the parietal cells through binding to the prostaglandin receptor. The activity of this receptor is mediated by G proteins which normally activate adenylate cyclase. The indirect inhibition of adenylate cyclase by Misoprostol may be dependent on guanosine-5’-triphosphate (GTP). The significant cytoprotective actions of misoprostol are related to several mechanisms. These include: 1. Increased secretion of bicarbonate, 2. Considerable decrease in the volume and pepsin content of the gastric secretions, 3. It prevents harmful agents from disrupting the tight junctions between the epithelial cells which stops the subsequent back diffusion of H+ ions into the gastric mucosa, 4. Increased thickness of mucus layer, 5. Enhanced mucosal blood flow as a result of direct vasodilatation, 6. Stabilization of tissue lysozymes/vascular endothelium, 7. Improvement of mucosal regeneration capacity, and 8. Replacement of prostaglandins that have been depleted as a result of various insults to the area. Misoprostol has also been shown to increase the amplitude and frequency of uterine contractions during pregnancy via selective binding to the EP-2/EP-3 prostanoid receptors. Misoprostol is indicated for the treatment of ulceration (duodenal, gastric and NSAID induced) and prophylaxis for NSAID induced ulceration. Misoprostol is also indicated for other uses that are not approved in Canada, including the medical termination of an intrauterine pregnancy used alone or in combination with methotrexate, as well as the induction of labour in a selected population of pregnant women with unfavourable cervices. This indication is avoided in women with prior uterine surgery or cesarean surgery due to an increased risk of possible uterine rupture. Misoprostol is also used for the prevention or treatment of serious postpartum hemorrhage. Misoprostol is sold under the brandname Cytotec among others.
Status:
US Approved Rx
(2014)
Source:
ANDA201995
(2014)
Source URL:
First approved in 1986
Source:
PEPCID by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Famotidine, a competitive histamine H2-receptor antagonist, is used to treat gastrointestinal disorders such as gastric or duodenal ulcer, gastroesophageal reflux disease, and pathological hypersecretory conditions. Famotidine inhibits many of the isoenzymes of the hepatic CYP450 enzyme system. Other actions of Famotidine include an increase in gastric bacterial flora such as nitrate-reducing organisms. Famotidine binds competitively to H2-receptors located on the basolateral membrane of the parietal cell, blocking histamine affects. This competitive inhibition results in reduced basal and nocturnal gastric acid secretion and a reduction in gastric volume, acidity, and amount of gastric acid released in response to stimuli including food, caffeine, insulin, betazole, or pentagastrin.
Status:
US Approved Rx
(2002)
Source:
ANDA076257
(2002)
Source URL:
First approved in 1984
Source:
MICRONASE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Glyburide, a second-generation sulfonylurea antidiabetic agent, lowers blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. With chronic administration in Type II diabetic patients, the blood glucose lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may be involved in the mechanism of action of oral sulfonyl-urea hypoglycemic drugs. The combination of glibenclamide and metformin may have a synergistic effect, since both agents act to improve glucose tolerance by different but complementary mechanisms. In addition to its blood glucose lowering actions, glyburide produces a mild diuresis by enhancement of renal free water clearance. Glyburide is twice as potent as the related second-generation agent glipizide. Sulfonylureas such as glyburide bind to ATP-sensitive potassium channels on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. Glyburide is indicated as an adjunct to diet to lower the blood glucose in patients with NIDDM whose hyperglycemia cannot be satisfactorily controlled by diet alone. Glyburide is available as a generic, is manufactured by many pharmaceutical companies and is sold in doses of 1.25, 2.5 and 5 mg under many brand names including Gliben-J, Daonil, Diabeta, Euglucon, Gilemal, Glidanil, Glybovin, Glynase, Maninil, Micronase and Semi-Daonil. It is also available in a fixed-dose combination drug with metformin that is sold under various trade names, e.g. Bagomet Plus, Benimet, Glibomet, Gluconorm, Glucored, Glucovance, Metglib and many others.
Status:
US Approved Rx
(2005)
Source:
ANDA077507
(2005)
Source URL:
First approved in 1984
Source:
GLUCOTROL by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Glipizide, a second-generation sulfonylurea, is used with diet to lower blood glucose in patients with diabetes mellitus type II. The primary mode of action of glipizide in experimental animals appears to be the stimulation of insulin secretion from the beta cells of pancreatic islet tissue and is thus dependent on functioning beta cells in the pancreatic islets. In humans glipizide appears to lower the blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. In man, stimulation of insulin secretion by glipizide in response to a meal is undoubtedly of major importance. Fasting insulin levels are not elevated even on long-term glipizide administration, but the postprandial insulin response continues to be enhanced after at least 6 months of treatment. Some patients fail to respond initially, or gradually lose their responsiveness to sulfonylurea drugs, including glipizide. Sulfonylureas likely bind to ATP-sensitive potassium-channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. Glipizide is used as an adjunct to diet for the control of hyperglycemia and its associated symptomatology in patients with non-insulin-dependent diabetes mellitus (NIDDM; type II), formerly known as maturity-onset diabetes, after an adequate trial of dietary therapy has proved unsatisfactory. Glipizide is marketed by Pfizer under the brand name Glucotrol in the USA, where Pfizer sells Glucotrol in doses of 5 and 10 milligrams and Glucotrol XL (an extended release form of glipizide) in doses of 2.5, 5, and 10 milligrams. Other companies also market glipizide, most commonly extended release tablets of 5 and 10 milligrams.
Status:
US Approved Rx
(2000)
Source:
ANDA075294
(2000)
Source URL:
First approved in 1983
Source:
ZANTAC 150 by GLAXO GRP LTD
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ranitidine, a histamine H2-receptor antagonist, is now well established as a potent inhibitor of gastric acid secretion effective in the treatment and prophylaxis of gastrointestinal lesions aggravated by gastric acid secretion.
Status:
US Approved Rx
(2025)
Source:
NDA219488
(2025)
Source URL:
First approved in 1983
Source:
CHENIX by LEADIANT BIOSCI INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2007)
Source:
ANDA078012
(2007)
Source URL:
First approved in 1981
Source:
NDA018422
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Gemfibrozil, a fibric acid antilipemic agent similar to clofibrate, is used to treat hyperlipoproteinemia and as a second-line therapy for type IIb hypercholesterolemia. It acts to reduce triglyceride levels, reduce VLDL levels, reduce LDL levels (moderately), and increase HDL levels (moderately). Gemfibrozil increases the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis. It does so by activating Peroxisome proliferator-activated receptor-alpha (PPARα) 'transcription factor ligand', a receptor that is involved in metabolism of carbohydrates and fats, as well as adipose tissue differentiation. This increase in the synthesis of lipoprotein lipase thereby increases the clearance of triglycerides. Chylomicrons are degraded, VLDLs are converted to LDLs, and LDLs are converted to HDL. This is accompanied by a slight increase in secretion of lipids into the bile and ultimately the intestine. Gemfibrozil also inhibits the synthesis and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. Gemfibrozil is most commonly sold as the brand name, Lopid. Other brand names include Jezil and Gen-Fibro.
Status:
US Approved Rx
(1978)
Source:
NDA017744
(1978)
Source URL:
First approved in 1978
Source:
NDA017744
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Difenoxin is a 4-phenylpiperidine which is closely related to the opioid analgesic meperidine. Difenoxin alone is a USA Schedule I controlled drug, as it may be habit forming. However, it is listed as a Schedule IV controlled drug if combined with atropine, which is added to decrease deliberate misuse. Motofen(R) is a brand mixture which combines atropine sulfate and difenoxin hydrochloride. It is approved by the FDA to treat acute and chronic diarrhea. Difenoxin is an active metabolite of the anti-diarrheal drug, diphenoxylate, which is also used in combination with atropine in the brand mixture Lomotil(R). It works mostly in the periphery and activates opioid receptors in the intestine rather than the central nervous system (CNS). Difenoxin is also closely related to loperamide, but unlike loperamide it is still capable of crossing the blood brain barrier to produce weak sedative and analgesic effects. However, the antidiarrheal potency of difenoxin is much greater than its CNS effects, which makes it an attractive alternative to other opioids. Motofen(R) is a combination of atropine, an anticholinergic drug, and difenoxin, an antidiarrheal drug. It has been used in many countries for many years as a second line opioid-agonist antidiarrheal, which exists an intermediate between loperamide and paragoric. Diarrhea which is a result of cyclic or diarrhea predominant Inflammatory Bowel Syndrome may not be treated effectively with difenoxin, diphenoxylate, or loperamide. As such, diarrhea and cramping which does not respond to non-centrally acting derivatives or belladonna derivatives such as atropine are often treated with conservative doses of codeine. In patients with acute ulcerative colitis, as induction of toxic megacolon is possible, and thus use of Motofen(R) is cautioned. Motofen(R) has been assigned pregnancy category C by the FDA, and is to be used only when the potential benefits outweigh the potential risk to the fetus. The safety of use during lactation is unknown and thus not recommended. Each five-sided dye free MOTOFEN® tablet contains: 1 mg of difenoxin (equivalent to 1.09 mg of difenoxin
hydrochloride) and 0.025 mg of atropine sulfate (equivalent to 0.01 mg of atropine). Difenoxin acts as an antidiarrheal by activating peripheral opioid receptors in the small intestine and thereby inhibiting peristalsis. However, research has suggested that non-opioid receptor pathways exist. This would explain the potent antidiarrheal effects of difenoxin despite only limited opioid action.