U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 151 - 160 of 12132 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Diltiazem is a nondihydropyridines calcium channel blocker used in the treatment of hypertension, angina pectoris, and some types of arrhythmia. Diltiazem produces its antihypertensive effect primarily by relaxation of vascular smooth muscle and the resultant decrease in peripheral vascular resistance.
Status:

Class (Stereo):
CHEMICAL (RACEMIC)



Malathion is an organophosphate insecticide, an inhibitor of cholinesterase. In low doses (0.5%) malathion is used for treatment of pediculosis and scabies.
Piroxicam is in a class of drugs called nonsteroidal anti-inflammatory drugs (NSAIDs). It was originally brought to market by Pfizer under the tradename Feldene in 1980, became generic in 1992, and is marketed worldwide under many brandnames. Piroxicam works by reducing hormones that cause inflammation and pain in the body. Piroxicam is used to reduce the pain, inflammation, and stiffness caused by rheumatoid arthritis and osteoarthritis. The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. Piroxicam is used for treatment of osteoarthritis and rheumatoid arthritis.
Etomidate (AMIDATE®) is an imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It is intended for the induction of general anesthesia by intravenous injection. Etomidate (AMIDATE®) is also indicated for the supplementation of subpotent anesthetic agents, such as nitrous oxide in oxygen, during maintenance of anesthesia for short operative procedures such as dilation and curettage or cervical conization. It also produces a unique toxicity among anesthetic drugs - inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate (AMIDATE®) in the central nervous system are specific gamma-aminobutyric acid (GABA) type A receptor subtypes. The R(+) isomer of etomidate is 10 times more potent than its S(-) isomer at potentiating GABA-A receptor activity.
Acyclovir is a synthetic antiviral nucleoside analogue. A screening program for antiviral drugs begun at Burroughs Wellcome in the 1960s resulted in the discovery of acyclovir in 1974. Preclinical investigation brought the drug to clinical trials in 1977 and the first form of the drug (topical) was available to physicians in 1982. Activity of acyclovir is greatest against herpes 1 and herpes 2, less against varicella zoster, still less against Epstein-Barr, and very little against cytomegalovirus. Acyclovir is an antiviral agent only after it is phosphorylated in infected cells by a viral-induced thymidine kinase. Acyclovir monophosphate is phosphorylated to diphosphate and triphosphate forms by cellular enzymes in the infected host cell where the drug is concentrated. Acyclovir triphosphate inactivates viral deoxyribonucleic acid polymerase.
Status:
First approved in 1982

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Econazole (commonly used as the nitrate salt) is an antifungal medication of the imidazole class. It is a broad spectrum antimycotic with some action against Gram positive bacteria. It is used topically in dermatomycoses also orally and parenterally. Sold under the brand name Ecoza among others, it is indicated for the treatment of interdigital tinea pedis caused by Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum in patients 12 years of age and older. Econazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Econazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis.
Status:
First approved in 1981

Class (Stereo):
CHEMICAL (ACHIRAL)


Isosulfan Blue is a synthetic visual lymphatic imaging agent. Injected into the periphery of the tumor site, isosulfan blue localizes to the lymphatic system and aids in the surgical identification of tumor sentinel nodes which stain blue. The chemical name of isosulfan blue is N-[4-[[4-(diethylamino)phenyl] (2,5-disulfophenyl) methylene]-2,5-cyclohexadien-1-ylidene]-N-ethylethanaminium hydroxide, inner salt, sodium salt. Isosulfan blue is a greenish blue color hygroscopic powder. Isosulfan blue injection 1% is a contrast agent for the delineation of lymphatic vessels. Isosulfan blue injection 1% upon subcutaneous administration, delineates lymphatic vessels draining the region of injection. It is an adjunct to lymphography in: primary and secondary lymphedema of the extremities; chyluria, chylous ascites or chylothorax; lymph node involvement by primary or secondary neoplasm; and lymph node response to therapeutic modalities.
Praziquantel, marketed as Biltricide, is an anthelmintic used in humans and animals for the treatment of tapeworms and flukes. Specifically, it is effective against schistosoma, Clonorchis sinensis the fish tape worm Diphyllobothrium latum. Praziquantel works by causing severe spasms and paralysis of the worms' muscles. This paralysis is accompanied - and probably caused - by a rapid Ca 2+ influx inside the schistosome. Morphological alterations are another early effect of praziquantel. These morphological alterations are accompanied by an increased exposure of schistosome antigens at the parasite surface. The worms are then either completely destroyed in the intestine or passed in the stool. An interesting quirk of praziquantel is that it is relatively ineffective against juvenile schistosomes. While initially effective, effectiveness against schistosomes decreases until it reaches a minimum at 3-4 weeks. Effectiveness then increases again until it is once again fully effective at 6-7 weeks. Glutathione S-transferase (GST), an essential detoxification enzyme in parasitic helminths, is a major vaccine target and a drug target against schistosomiasis. Schistosome calcium ion channels are currently the only known target of praziquantel. The antibiotic rifampicin decreases plasma concentrations of praziquantel. Carbamazepine and phenytoin are reported to reduce the bioavailability of praziquantel. Chloroquine reduces the bioavailability of praziquantel. The drug cimetidine heightens praziquantel bioavailability.
Ecraprost [AS 013, Circulase] is a prodrug of prostaglandin E(1) within lipid microspheres that is being developed in Japan by Mitsubishi Pharma Corporation and Asahi Glass. It was originally in development with Welfide Corporation. On 1 October 2001, Welfide Corporation (formerly Yoshitomi) merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. Taisho and Seikagaku Corporation had been involved in the development of ecraprost but discontinued their licences to do so. The effects of ecraprost on reperfusion injury, in preclinical studies, had been reported by Taisho. Ecraprost is in phase II in Japan and was in phase II in Europe for the treatment of peripheral arterial disease. It was also in a phase II study in the treatment of diabetic neuropathies. However, this is no longer an active indication. A phase III trial using a lipid emulsion of ecraprost [Circulase] is underway with Mitsubishi Pharma Corporation in the US, using ecraprost for the treatment of patients with severe peripheral arterial disease, which, because of decreased blood flow to the extremities, can lead to painful ulcers on the legs and feet and subsequent amputation. Alpha Therapeutic Corporation (a former subsidiary of Mitsubishi Pharma) was initially involved in trials of ecraprost in the US, but this responsibility has been taken over by the parent company.
Metoclopramide is a dopamine D2 antagonist that is used as an antiemetic. Metoclopramide inhibits gastric smooth muscle relaxation produced by dopamine, therefore increasing cholinergic response of the gastrointestinal smooth muscle. It accelerates intestinal transit and gastric emptying by preventing relaxation of gastric body and increasing the phasic activity of antrum. Simultaneously, this action is accompanied by relaxation of the upper small intestine, resulting in an improved coordination between the body and antrum of the stomach and the upper small intestine. Metoclopramide also decreases reflux into the esophagus by increasing the resting pressure of the lower esophageal sphincter and improves acid clearance from the esophagus by increasing amplitude of esophageal peristaltic contractions. Metoclopramide's dopamine antagonist action raises the threshold of activity in the chemoreceptor trigger zone and decreases the input from afferent visceral nerves. Studies have also shown that high doses of metoclopramide can antagonize 5-hydroxytryptamine (5-HT) receptors in the peripheral nervous system in animals. Metoclopramide is used for the treatment of gastroesophageal reflux disease (GERD). It is also used in treating nausea and vomiting, and to increase gastric emptying.