{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
GANITE by CHAPTER 7 TRUSTEE
(1991)
Source URL:
First approved in 1991
Source:
GANITE by CHAPTER 7 TRUSTEE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Status:
US Previously Marketed
Source:
PENETREX by SANOFI AVENTIS US
(1991)
Source URL:
First approved in 1991
Source:
PENETREX by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Enoxacin is bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination. Enoxacin is active against many Gram-positive bacteria. After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours. Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold. The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.
Status:
US Previously Marketed
Source:
LORABID by KING PHARMS
(1991)
Source URL:
First approved in 1991
Source:
LORABID by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Loracarbef (KT3777) is carbacephem antibiotic structurally identical to cefaclor, except that the sulfur atom of position 1 of the cephem nucleus has been replaced by carbon. It showed good affinity for penicillin-binding proteins. At low concentrations (< 2 mg/L) in vitro, it inhibits Streptococcus pneumoniae, S. pyogenes, beta-haemolytic streptococci groups B, C and G. Proteus mirabilis and Moraxella catarrhalis, including beta-lactamase-producing strains. At therapeutic plasma concentrations it is also active in vitro against most strains of Staphylococcus aureus, S. saprophyticus, Escherichia coli and beta-lactamase-positive and -negative strains of Haemophilus influenzae. Loracarbef has been indicated in the treatment of patients with mild to moderate infections caused by susceptible strains of the designated microorganisms.
Status:
US Previously Marketed
Source:
HEXALEN by EISAI INC
(1990)
Source URL:
First approved in 1990
Source:
HEXALEN by EISAI INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Altretamine is structurally similar to the alkylating agent triethylenemelamine (tretamine). Although Altretamine structurally resembles an alkylating agent, it has not been found to have alkylating activity in vitro. The precise mechanism of Altretamine cytotoxicity is unknown, although several proposals have been made. Altretamine requires N-demethylation in the liver to produce reactive intermediates (formaldehyde and/or iminium species) which covalently bind to DNA, resulting in DNA damage, or act as alkylating agents. Altretamine is used as a palliative treatment for persistent or recurrent ovarian cancer following treatment failure with a cisplatin- or alkylating agent-based combination. Side effects of Altretamine include nausea and vomiting, neurotoxicity (mood disorders, disorders of consciousness, ataxia, dizziness, vertigo), mild to moderate dose-related myelosuppression. Altretamine has been shown to be embryotoxic and teratogenic in rats and rabbits and may cause fetal damage when administered to a pregnant woman. Under the trade name Hexalen, Altretamine, is an antineoplastic agent. It is indicated for use as a single agent in the palliative treatment of patients with persistent or recurrent ovarian cancer following first-line therapy with a cisplatin and/or alkylating agent-based combination.
Status:
US Previously Marketed
Source:
VASCOR by JOHNSON AND JOHNSON
(1990)
Source URL:
First approved in 1990
Source:
VASCOR by JOHNSON AND JOHNSON
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bepridil is a calcium channel blocker that has well characterized anti-anginal properties and known but poorly characterized type 1 anti-arrhythmic and anti-hypertensive properties. It has inhibitory effects on both the slow calcium and fast sodium inward currents in myocardial and vascular smooth muscle, interferes with calcium binding to calmodulin, and blocks both voltage and receptor operated calcium channels. It is used to treat hypertension (high blood pressure), angina (chest pain), sustained atrial fibrillation and tachyarrhythmia. The most common side effects were upper gastrointestinal complaints (nausea, dyspepsia or GI distress), diarrhea, dizziness, asthenia and nervousness. Certain drugs could increase the likelihood of potentially serious adverse effects with bepridil hydrochloride. In general, these are drugs that have one or more pharmacologic activities similar to bepridil hydrochloride, including anti-arrhythmic agents such as quinidine and procainamide, cardiac glycosides and tricyclic anti-depressants. Anti-arrhythmics and tricyclic anti-depressants could exaggerate the prolongation of the QT interval observed with bepridil hydrochloride. Cardiac glycosides could exaggerate the depression of AV nodal conduction observed with bepridil hydrochloride.
Status:
US Previously Marketed
Source:
ARDUAN by ORGANON USA INC
(1990)
Source URL:
First approved in 1990
Source:
ARDUAN by ORGANON USA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pipecuronium is a piperazinyl androstane derivative, which is a non-depolarizing neuromuscular blocking agent, which was approved under brand name arduan for injection. It is a long-acting neuromuscular blocking agent, indicated as an adjunct to general anesthesia, to provide skeletal muscle relaxation during surgery. Arduan can also be used to provide skeletal muscle relaxation for endotracheal intubation. Pipecuronium undergoes very little metabolism and is excreted by the kidney and the liver. Owing to its relatively long duration of action and to the residual postoperative neuromuscular block (RPONB), the use of pipecuronium was discontinued in the United States and in several European countries. Because of its excellent safety profile, the use of pipecuronium has been maintained in several countries including China, Russia, Brazil, and Hungary, among others. Its safe use, however, is dependent on the availability of a reliable reversal drug. Although widely used, there are concerns with the use of neostigmine for reversal. Arduan is a powerful competitive antagonist of acetylcholine, since it can bind pre- and postsynaptic (N1) receptors of the transmitters.
Status:
US Previously Marketed
Source:
VASCOR by JOHNSON AND JOHNSON
(1990)
Source URL:
First approved in 1990
Source:
VASCOR by JOHNSON AND JOHNSON
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bepridil is a calcium channel blocker that has well characterized anti-anginal properties and known but poorly characterized type 1 anti-arrhythmic and anti-hypertensive properties. It has inhibitory effects on both the slow calcium and fast sodium inward currents in myocardial and vascular smooth muscle, interferes with calcium binding to calmodulin, and blocks both voltage and receptor operated calcium channels. It is used to treat hypertension (high blood pressure), angina (chest pain), sustained atrial fibrillation and tachyarrhythmia. The most common side effects were upper gastrointestinal complaints (nausea, dyspepsia or GI distress), diarrhea, dizziness, asthenia and nervousness. Certain drugs could increase the likelihood of potentially serious adverse effects with bepridil hydrochloride. In general, these are drugs that have one or more pharmacologic activities similar to bepridil hydrochloride, including anti-arrhythmic agents such as quinidine and procainamide, cardiac glycosides and tricyclic anti-depressants. Anti-arrhythmics and tricyclic anti-depressants could exaggerate the prolongation of the QT interval observed with bepridil hydrochloride. Cardiac glycosides could exaggerate the depression of AV nodal conduction observed with bepridil hydrochloride.
Status:
US Previously Marketed
Source:
ERGAMISOL by JANSSEN PHARMA
(1990)
Source URL:
First approved in 1990
Source:
ERGAMISOL by JANSSEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Levamisole (the trade name Ergamisol), an anthelminthic drug with immunological properties. It also has antitumor activity when administered with 5-fluorouracil in patients with Duke's C colorectal carcinoma; however, this use was discontinued. The mechanism of the antitumor effect is unknown but has been postulated to be related to levamisole's immunomodulatory properties. Levamisole can stimulate antibody formation to various antigens, enhance T-cell responses by stimulating T-cell activation and proliferation, potentiate monocyte and macrophage functions including phagocytosis, chemotaxis and increases motility, adherence, and chemotaxis. Levamisole inhibits alkaline phosphatase and possesses cholinergic activity. The mechanism of action of levamisole as an antiparasitic agent, for example, to treat ascariasis, relates to its agonistic activity to L-subtype nicotinic acetylcholine receptors in nematode muscles. In addition, levamisole was studied for preventing relapses of the steroid-sensitive idiopathic nephrotic syndrome (SSINS). It was shown, that alone or in combination with steroids, the drug can prolong the time to relapse and prevented recurrence during one year of treatment. However, these studies also were also discontinued.
Status:
US Previously Marketed
Source:
ERGAMISOL by JANSSEN PHARMA
(1990)
Source URL:
First approved in 1990
Source:
ERGAMISOL by JANSSEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Levamisole (the trade name Ergamisol), an anthelminthic drug with immunological properties. It also has antitumor activity when administered with 5-fluorouracil in patients with Duke's C colorectal carcinoma; however, this use was discontinued. The mechanism of the antitumor effect is unknown but has been postulated to be related to levamisole's immunomodulatory properties. Levamisole can stimulate antibody formation to various antigens, enhance T-cell responses by stimulating T-cell activation and proliferation, potentiate monocyte and macrophage functions including phagocytosis, chemotaxis and increases motility, adherence, and chemotaxis. Levamisole inhibits alkaline phosphatase and possesses cholinergic activity. The mechanism of action of levamisole as an antiparasitic agent, for example, to treat ascariasis, relates to its agonistic activity to L-subtype nicotinic acetylcholine receptors in nematode muscles. In addition, levamisole was studied for preventing relapses of the steroid-sensitive idiopathic nephrotic syndrome (SSINS). It was shown, that alone or in combination with steroids, the drug can prolong the time to relapse and prevented recurrence during one year of treatment. However, these studies also were also discontinued.
Status:
US Previously Marketed
Source:
ETHMOZINE by SHIRE
(1990)
Source URL:
First approved in 1990
Source:
ETHMOZINE by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Moricizine is an antiarrhythmic agent previously marketed as Ethmozine. It was used for prophylaxis and treatment of serious and life-threatening ventricular arrhythmias. In 2007 it was withdrawn and discontinued for commercial reasons. Moricizine can be administered intravenously but was more commonly provided as an oral formulation.