U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 157781 - 157790 of 167129 results

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Enoxacin is bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination. Enoxacin is active against many Gram-positive bacteria. After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours. Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold. The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.
Gallium nitrate (brand name Ganite) is a drug that is used to treat hyper-calcemia, or too much calcium in the blood. Ganite exerts a hypocalcemic effect by inhibiting calcium resorption from bone, possibly by reducing increased bone turnover. It was shown, that gallium favorably altered the mineral properties to enhance hydroxyapatite crystallization and reduced mineral solubility. The drug also acted on the cellular components of bone to reduce bone resorption by decreasing acid secretion by osteoclasts. Nevertheless, ganite was withdrawn from sale, although the reasons was not the safety or effectiveness. Gallium nitrate inhibits the growth of various lymphoma cell lines in vitro and exhibits antitumor activity in patients with lymphoma. Gallium binds avidly to the iron transport protein transferrin. Transferrin-gallium complexes preferentially target cells that express transferrin receptors on their surface. Expression of transferrin receptors is particularly high on lymphoma cells. Cellular uptake of the gallium-transferrin complex leads to inhibition of cellular proliferation primarily via disruption of iron transport and homeostasis and blockade of ribonucleotide reductase. In phase II of clinical trials in patients with relapsed or refractory lymphoma, the antitumor activity of gallium nitrate is similar to, or better than, that of other commonly used chemotherapeutic agents.

Showing 157781 - 157790 of 167129 results