U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ABSOLUTE
Molecular Formula C15H17FN4O3.C6H12O7
Molecular Weight 516.4742
Optical Activity UNSPECIFIED
Defined Stereocenters 4 / 4
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of ENOXACIN GLUCONATE

SMILES

OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.CCN1C=C(C(O)=O)C(=O)C2=CC(F)=C(N=C12)N3CCNCC3

InChI

InChIKey=UQCAODSJNCBXEG-IFWQJVLJSA-N
InChI=1S/C15H17FN4O3.C6H12O7/c1-2-19-8-10(15(22)23)12(21)9-7-11(16)14(18-13(9)19)20-5-3-17-4-6-20;7-1-2(8)3(9)4(10)5(11)6(12)13/h7-8,17H,2-6H2,1H3,(H,22,23);2-5,7-11H,1H2,(H,12,13)/t;2-,3-,4+,5-/m.1/s1

HIDE SMILES / InChI

Description
Curator's Comment: description was created based on several sources, including https://www.ncbi.nlm.nih.gov/pubmed/6226242 | https://www.ncbi.nlm.nih.gov/pubmed/8429114 | https://www.ncbi.nlm.nih.gov/pubmed/8494374

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Enoxacin is bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination. Enoxacin is active against many Gram-positive bacteria. After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours. Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold. The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.

Originator

Curator's Comment: Enoxacin is a new pyridonecarboxylic acid derivative synthesized by Matsumoto et al.

Approval Year

Targets

Targets

Primary TargetPharmacologyConditionPotency
Conditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Curative
PENETREX

Approved Use

INDICATIONS AND USAGE. Uncomplicated urethral or cervical gonorrhea due to Neisseria gonorrhoeae. Uncomplicated urinary tract infections (cystitis) due to Escherichia coli, Staphylococcus epidermidis*, or Staphylococcus saprophyticus. Complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Enterobacter cloacae.

Launch Date

1991
Curative
PENETREX

Approved Use

INDICATIONS AND USAGE. Uncomplicated urethral or cervical gonorrhea due to Neisseria gonorrhoeae. Uncomplicated urinary tract infections (cystitis) due to Escherichia coli, Staphylococcus epidermidis*, or Staphylococcus saprophyticus. Complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Enterobacter cloacae.

Launch Date

1991
Curative
PENETREX

Approved Use

INDICATIONS AND USAGE. Uncomplicated urethral or cervical gonorrhea due to Neisseria gonorrhoeae. Uncomplicated urinary tract infections (cystitis) due to Escherichia coli, Staphylococcus epidermidis*, or Staphylococcus saprophyticus. Complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Enterobacter cloacae.

Launch Date

1991
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
7.4 mg/L
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
4-OXO-ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
0.7 mg/L
400 mg 2 times / day steady-state, oral
dose: 400 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
4-OXO-ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
3.8 mg/L
800 mg single, oral
dose: 800 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
6.58 mg/L
800 mg single, intravenous
dose: 800 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
1.02 mg/L
200 mg single, oral
dose: 200 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
1.83 mg/L
200 mg single, intravenous
dose: 200 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.8 mg/L
400 mg 2 times / day steady-state, oral
dose: 400 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
7.4 mg/L
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
25.75 mg × h/L
800 mg single, oral
dose: 800 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
29.08 mg × h/L
800 mg single, intravenous
dose: 800 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.67 mg × h/L
200 mg single, oral
dose: 200 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
5.35 mg × h/L
200 mg single, intravenous
dose: 200 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
6 h
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
4-OXO-ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
4.9 h
800 mg single, oral
dose: 800 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.9 h
800 mg single, intravenous
dose: 800 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
3.2 h
200 mg single, oral
dose: 200 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
3.2 h
200 mg single, intravenous
dose: 200 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.5 h
400 mg 2 times / day steady-state, oral
dose: 400 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
6 h
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
Doses

Doses

DosePopulationAdverse events​
600 mg single, oral
Highest studied dose
Dose: 600 mg
Route: oral
Route: single
Dose: 600 mg
Sources:
unhealthy, 41.9 years
n = 79
Health Status: unhealthy
Condition: cystitis
Age Group: 41.9 years
Sex: M+F
Population Size: 79
Sources:
200 mg 2 times / day steady, oral
Recommended
Dose: 200 mg, 2 times / day
Route: oral
Route: steady
Dose: 200 mg, 2 times / day
Sources:
unhealthy, 43.8 years
n = 75
Health Status: unhealthy
Condition: cystitis
Age Group: 43.8 years
Sex: M+F
Population Size: 75
Sources:
600 mg 3 times / day multiple, oral (max)
Highest studied dose
Dose: 600 mg, 3 times / day
Route: oral
Route: multiple
Dose: 600 mg, 3 times / day
Sources:
unhealthy, adult
n = 20060
Health Status: unhealthy
Condition: Gram-negative urinary tract pathogens
Age Group: adult
Sex: M+F
Population Size: 20060
Sources:
Other AEs: Gastrointestinal disorders, Epidermal and dermal conditions...
Other AEs:
Gastrointestinal disorders (1.3%)
Epidermal and dermal conditions (0.4%)
Sources:
AEs

AEs

AESignificanceDosePopulation
Epidermal and dermal conditions 0.4%
600 mg 3 times / day multiple, oral (max)
Highest studied dose
Dose: 600 mg, 3 times / day
Route: oral
Route: multiple
Dose: 600 mg, 3 times / day
Sources:
unhealthy, adult
n = 20060
Health Status: unhealthy
Condition: Gram-negative urinary tract pathogens
Age Group: adult
Sex: M+F
Population Size: 20060
Sources:
Gastrointestinal disorders 1.3%
600 mg 3 times / day multiple, oral (max)
Highest studied dose
Dose: 600 mg, 3 times / day
Route: oral
Route: multiple
Dose: 600 mg, 3 times / day
Sources:
unhealthy, adult
n = 20060
Health Status: unhealthy
Condition: Gram-negative urinary tract pathogens
Age Group: adult
Sex: M+F
Population Size: 20060
Sources:
Overview

Overview

CYP3A4CYP2C9CYP2D6hERG
Drug as perpetrator​Drug as victim

Drug as victim

PubMed

PubMed

TitleDatePubMed
Assessment of temafloxacin neurotoxicity in rodents.
1991 Dec 30
Hippocampus and frontal cortex are the potential mediatory sites for convulsions induced by new quinolones and non-steroidal anti-inflammatory drugs.
1991 Jun
Interaction of the new quinolone antibacterial agent levofloxacin with fenbufen in mice.
1992 Mar
Enoxacin acute liver injury.
1992 May
[The history of the development and changes of quinolone antibacterial agents].
2003
Enoxacin trihydrate.
2004 Apr
Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity.
2004 Apr
Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones with a human non-small cell lung cancer cell line in culture.
2004 Apr-Jun
Validation of HPLC method for determination of six fluoroquinolones: cinoxacin, ciprofloxacin, enoxacin, lomefloxacin, norfloxacin and ofloxacin.
2004 Dec
Sensitivity and spectrum of bacterial isolates in infectious otitis externa.
2004 Mar
Spectroscopic properties of various quinolone antibiotics in aqueous-organic solvent mixtures.
2004 Nov-Dec
Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P-glycoprotein efflux.
2004 Nov-Dec
[Simultaneous determination of quinolones in foods by LC/MS/MS].
2004 Oct
A novel approach to estimate in vitro antibacterial potency of Chinese medicine using a concentration-killing curve method.
2005
Determination of fluoroquinolones in edible animal tissue samples by high performance liquid chromatography after solid phase extraction.
2005 Apr
Evaluation of phototoxic and photoallergic potentials of 13 compounds by different in vitro and in vivo methods.
2005 Apr 4
HPLC determination of enoxacin, ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection and multiemission scanning: application to urine and serum.
2005 Aug 5
Selective action of fluoroquinolones against intracellular amastigotes of Leishmania (Viannia) panamensis in vitro.
2005 Dec
Validation of a novel HPLC sorbent material for the determination of ten quinolones in human and veterinary pharmaceutical formulations.
2005 Dec
Preparation and evaluation of sustained ophthalmic gel of enoxacin.
2005 Dec
Celecoxib does not induce convulsions nor does it affect GABAA receptor binding activity in the presence of new quinolones in mice.
2005 Jan 10
Structure-phototoxicity relationship in Balb/c mice treated with fluoroquinolone derivatives, followed by ultraviolet-A irradiation.
2005 Jul 4
Induced and photoinduced DNA damage by quinolones: ciprofloxacin, ofloxacin and nalidixic acid determined by comet assay.
2005 Jul-Aug
Flow-injection electrogenerated chemiluminescence determination of fluoroquinolones based on its sensitizing effect.
2005 Jul-Oct
Prediction of genotoxicity of chemical compounds by statistical learning methods.
2005 Jun
Interaction study between enoxacin and fluvoxamine.
2005 Jun
Direct determination of five fluoroquinolones in chicken whole blood and in veterinary drugs by HPLC.
2005 Mar
Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin.
2005 Mar
Antimicrosporidial activity of (fluoro)quinolones in vitro and in vivo.
2005 May
Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products.
2005 May
Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002.
2005 May
Vibrational spectroscopic characterization of fluoroquinolones.
2005 May
Separation and determination of seven fluoroquinolones by pressurized capillary electrochromatography.
2005 Nov
[Determination of enoxacin in urine by synchronous fluorimetry].
2005 Oct
Bench-to-bedside review: antimicrobial utilization strategies aimed at preventing the emergence of bacterial resistance in the intensive care unit.
2005 Oct 5
Effect of fluoroquinolones on plasma glucose levels in fasted and glucose-loaded mice.
2006 Apr
Mutagenesis induced by 12 quinolone antibacterial agents in Escherichia coli WP2uvrA/pKM101.
2006 Apr
Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA).
2006 Apr 19
Antimicrobial drug resistance, regulation, and research.
2006 Feb
Genotoxic potential of quinolone antimicrobials in the in vitro comet assay and micronucleus test.
2006 Feb 28
Radiation-induced in vitro phototoxic potential of some fluoroquinolones.
2006 Jan
Effects of Transcutol P on the corneal permeability of drugs and evaluation of its ocular irritation of rabbit eyes.
2006 Jan
T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity.
2006 Jan
Photophysics and photochemistry of nalidixic acid.
2006 Jan-Feb
A batch chemiluminescence determination of enoxacin using a tris-(1,10-phenanthroline)ruthenium(II)-cerium(IV) system.
2006 Jul
Quinolones for uncomplicated acute cystitis in women.
2006 Jul 19
[Study on interaction of caffeine and theophylline with bovine serum albumins].
2006 Mar
Electrochemiluminescence of terbium (III)-two fluoroquinolones-sodium sulfite system in aqueous solution.
2006 May 1
A new approach to quantitative NMR: fluoroquinolones analysis by evaluating the chemical shift displacements.
2006 Oct 11
Induction of keratinocyte apoptosis by photosensitizing chemicals plus UVA.
2007 Feb
Patents

Sample Use Guides

Enoxacin should be taken at least one hour before or at least two hours after a meal. For treatment uncomplicated urethral or cervical gonorrhea: 400 mg single dose. For treatment uncomplicated urinary tract infections 200 mg q12h for 7 days. For treatment complicated urinary tract infections: 400 mg q12h for 14 days. Dosage should be adjusted in patients with a creatinine clearance value of 30 mL/min/1.73 m 2 or less.
Route of Administration: Oral
In Vitro Use Guide
The in vitro antibacterial activity of AT-2266 (Enoxacin ) was tested by the determination of minimal bactericidal concentrations (MBCs) and the reduction of viable cells during exposure to the drug for 24 h. MIC90s of AT-2266 for P. aeruginosa resistant to gentamicin and Enterobacteriaceae resistant to nalidixic acid were 3.13 and 12.5 mkg/ml, respectively
Name Type Language
ENOXACIN GLUCONATE
Common Name English
D-GLUCONIC ACID, COMPD. WITH 1-ETHYL-6-FLUORO-1,4-DIHYDRO-4-OXO-7-(1-PIPERAZINYL)-1,8-NAPHTHYRIDINE-3-CARBOXYLIC ACID (1:?)
Systematic Name English
Enoxacin gluconate [WHO-DD]
Common Name English
ENOXACIN GLYCONATE
Common Name English
D-GLUCONIC ACID, COMPD. WITH 1-ETHYL-6-FLUORO-1,4-DIHYDRO-4-OXO-7-(1-PIPERAZINYL)-1,8-NAPHTHYRIDINE-3-CARBOXYLIC ACID
Systematic Name English
D-GLUCONIC ACID, COMPD. WITH 1-ETHYL-6-FLUORO-1,4-DIHYDRO-4-OXO-7-(1-PIPERAZINYL)-1,8-NAPHTHYRIDINE-3-CARBOXYLIC ACID (1:1)
Systematic Name English
Code System Code Type Description
FDA UNII
FK8O5WLR9H
Created by admin on Sat Dec 16 13:39:08 GMT 2023 , Edited by admin on Sat Dec 16 13:39:08 GMT 2023
PRIMARY
PUBCHEM
70480544
Created by admin on Sat Dec 16 13:39:08 GMT 2023 , Edited by admin on Sat Dec 16 13:39:08 GMT 2023
PRIMARY
CAS
85200-30-2
Created by admin on Sat Dec 16 13:39:08 GMT 2023 , Edited by admin on Sat Dec 16 13:39:08 GMT 2023
PRIMARY
CAS
104142-71-4
Created by admin on Sat Dec 16 13:39:08 GMT 2023 , Edited by admin on Sat Dec 16 13:39:08 GMT 2023
NON-SPECIFIC STOICHIOMETRY
SMS_ID
100000176176
Created by admin on Sat Dec 16 13:39:08 GMT 2023 , Edited by admin on Sat Dec 16 13:39:08 GMT 2023
PRIMARY