U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1371 - 1380 of 1776 results

Tetraamminecopper sulfate is a dark blue crystalline solid with a faint odor of ammonia. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Used as a pesticide and fungicide, to print fabrics (especially in calico finishing), and to make other copper compounds.
Status:
First marketed in 1921
Source:
Elixir of Iron Lactate N.F.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
First marketed in 1921
Source:
Benzoic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Benzoic acid is a natural ingredient occurring in many foodstuffs and in plant extracts. Benzoic acid, its salts and esters are used as preservatives in cosmetic products, with a maximum concentration of 0.5 %. Benzoic acid and sodium benzoate are on the FDA list of substances that are generally recognized as safe (GRAS). Both may be used as antimicrobial agents, flavouring agents and as adjuvants with a current maximum level of 0.1% in food. Benzoic acid is a constituent of Whitfield Ointment, which is used for the treatment of fungal skin diseases such as tinea, ringworm, and athlete's foot. Adverse effect of Whitfield Ointment: occasionally, a localized mild inflammatory response occurs.
Status:
US Approved OTC
Source:
21 CFR 350.10(d) antiperspirant aluminum chlorohydrex propylene glycol
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
US Approved OTC
Source:
21 CFR 347.10(a) skin protectant allantoin
Source URL:
First approved in 1961
Source:
ALLANTOMIDE ALLANTOIN by NATIONAL DRUG
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



The aluminum salt of Allantoin, Alcloxa combines the astringent and anti-microbial properties of aluminum with the anti-irritant, soothing and healing properties of Allantoin. Alcloxa is particularly suited for use in anti-perspirants, acne treatments and foot care products. Alcloxa is a compound that combine the properties of aluminum salts with the properties of allantion. The allantion component ehhances the action of the aluminum salts and serves to overcome irritations experienced by many individuals who may be sensitive to the use of aluminum alts. The aluminum component reduces sweat by causing the sweat gland ducts swell. Alcloxa also add to the antiperspirant properties the deodorant effect because of its bacteriostatic action. It showed bacteriostatic properties at concentrations of 0.2% particularly against Gram bectaria (B. subtilis, S. aureus, P. vulgaris, Pityrosporum ovale). This is ascribable to two different mechanisms: first bacterial growth is retarded due to a decrease in the amount of water present, second aluminum salt have itself an antimicrobial action. In baby products is indicated for its healing reparative action, in the treatment of diaper rash. Also is approved in haemorrhoidal product for its soothing and keratolytic action. In oral care products Alcloxa is useful for its astringent antibacterial properties. It is very indicated in formulations for sensitive teeth, periodontal and gum diseases (like gingivitis, irritable and bleeding gums). Use levels: 0.1-1%. − In antiacne products the slightly astringent effect promotes healing of pustules and acne lesions. It reduces the extension of infected skin eruptions, healing them and developing a soothing action. May be used alone or also in combinations with other antimicrobial agents in order to fight acne more effectively. Use levels: 0.5-2.0%.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(10) cough/cold:nasal decongestant xylometazoline hydrochloride
Source URL:
First approved in 1959
Source:
Otrivin by Ciba Geigy
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Xylometazoline, also spelled xylomethazoline, is a medication which is used to improve symptoms of nasal congestion, allergic rhinitis, and sinusitis. Xylometazoline was patented in 1956 and came into medical use in 1959. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The drug works by stimulating adrenergic receptors on the lamina propria of blood vessels in the nose. The decongestant effect is due to constriction of large veins in the nose which swell up during the inflammation of any infection or allergy of the nose. The smaller arteries are also constricted and this causes the colour of the nasal epithelium to be visibly paler after dosage. The standard adult solution strength is 0.1% w/v xylometazoline (or 1 mg per 1 mL solution), and the dose for children under 12 is usually 0.05% (0.5 mg/mL).
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
US Approved OTC
Source:
21 CFR 331.11(a)(3) antacid:aluminum-containing dihydroxyaluminum aminoacetic acid
Source URL:
First approved in 1945
Source:
Algyn by Brayten (Chattem)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

There is not much information related to the medical application of ALUMINIUM TRIGLYCINATE, also known as ALUMINIUM AMINOACETATE. Nevertheless, some articles are describing the antacid properties of this substance and its application in the treatment of peptic ulcer.
Status:
US Approved OTC
Source:
21 CFR 331.11(a)(4) antacid:aluminum-containing aluminum phosphate gel (in combination only)
Source URL:
First approved in 1942
Source:
Phosphaljel by Wyeth
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Kasal (Sodium Aluminum Phosphate, basic, non-leavening) is a white odorless powder comprised of an autogenous mixture of alkaline sodium aluminum phosphate and dibasic sodium phosphate. Kasal is used primarily as an emulsifier in the production of processed cheese.
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Citric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.

Showing 1371 - 1380 of 1776 results