{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
riboflavin phosphate
to a specific field?
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
Dinitrophenol
(1933)
Source URL:
First marketed in 1933
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
2,4-dinitrophenol (DNP) is a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Although not licensed for human consumption, DNP and DNP crystal form are used by bodybuilders and extreme dieters for their fat burning properties through inhibiting efficient energy (ATP) production in cells. Through uncoupling mitochondrial oxidative phosphorylation by facilitating proton transport across the mitochondrial membrane, DNP leads to rapid consumption of energy without generating ATP and consequently, to increased fat metabolism. However, the weight-loss effect comes with serious, and in some cases potentially fatal, adverse side effects, namely hyperthermia (the leading cause of fatality with acute DNP toxicity) and cardiac arrest, but also diaphoresis, tachycardia, tachypnea, skin toxicity, Fourier’s gangrene and cataracts with low dose chronic exposure. The proposed mechanism of DNP induced toxicity suggests the activation of ATP-sensitive K channels.
Status:
US Previously Marketed
Source:
Cerium Oxalate U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Cerous iodide is a salt of lanthanide metal cerium (III) and iodide ion. In 1920s solution of cerous iodide for intravenous injection (called "introcid") was used as an antimicrobial agent for treating puerperal fever. It has shown prophylactic activity against sepsis, and was explored for its antineoplastic properties in patients with lymphogranulomatosis or inoperable solid tumors. According to the clinical reports, it has been applied with remarkable benefit, as indicated by tumor shrinkage and improved quality of life in several cases of locally advanced or metastatic tumors of different origin.
Status:
US Previously Marketed
Source:
CVP WITH VITAMIN K BIOFLAVONOID by USV
(1961)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Hesperidin is a flavanone glycoside found in citrus fruits. Its aglycone form is called hesperetin. Its name is derived from the word "hesperidium", for fruit produced by citrus trees. Hesperidin was first isolated in 1828 by French chemist Lebreton from the white inner layer of citrus peels (mesocarp, albedo). As a flavanone found in citrus fruits (such as oranges, lemons or pummelo fruits), hesperidin is under laboratory research for possible biological properties. One area of research is focused on the possible chemopreventive effects of hesperidin, but there is no current proof that hesperidin has this role in human cancer mechanisms. Hesperidin was effective in an animal model of Alzheimer's, alleviating pathological changes induced by aluminum. Early research suggests that taking one tablet of a specific product (Daflon 500, Les Laboratoires Servier) containing hesperidin and diosmin by mouth for 45 days decreases blood sugar levels and improves blood sugarcontrol in women with type 2 diabetes. For Rheumatoid arthritis (RA): early research suggests that drinking a beverage containing alpha-glucosyl hesperidin for 12 weeks improves symptoms of RA. Orally, hesperidin can cause gastrointestinal side effects, including abdominal pain, diarrhea, and gastritis. Headache can also occur in some patients. The possible anti-inflammatory action of hesperidin is probably due to the possible anti-inflammatory action of its aglycone hesperetin. Hesperetin appears to interfere with the metabolism of arachidonic acid as well as with histamine release. Hesperetin appears to inhibit phospholipase A2, lipoxygenase and cyclo-oxygenase. There is evidence that hesperetin inhibits histamine release from mast cells, which would account for the possible anti-allergic activity of hesperidin. The possible hypolipidemic effect of hesperidin is probably due to hesperetin's possible action in lipid lowering. Hesperetin may reduce plasma cholesterol levels by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, as well as acyl coenzyme A: cholesterol acytransferase (ACAT). Inhibition of these enzymes by hesperetin has been demonstrated in rats fed a high cholesterol diet. The mechanism of hesperidin's possible vasoprotective action is unclear. Animal studies have shown that hesperidin decreases microvascular permeability. Hesperidin, itself or via hesperetin, may protect endothelial cells from hypoxia by stimulating certain mitochondrial enzymes, such as succinate dehydrogenase. The mechanism of hesperidin's possible anticarcinogenic action is also unclear. One explanation may be the inhibition of polyamine synthesis. Inhibition of lipoxygenase and cyclo-oxygenase is another possibility.
Status:
US Previously Marketed
Source:
Silver Oxide U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Previously Marketed
Source:
STERILE UREA by HOSPIRA
(1976)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pastaron (Urea) is a waste product of many living organisms, and is the major organic component of human urine. It is a very important starting material in a number of chemical syntheses, and is used on an industrial scale for the manufacture of fertilizers, pharmaceuticals, and resins. Urea is an osmotic diuretic similar to mannitol but more irritant. Applied topically, urea promotes hydration of keratin and mild keratolysis in dry skin. It increases water uptake by the stratum corneum and has an antipruritic effect. Pastaron is used to soften rough or dry skin caused by skin conditions such as eczema, psoriasis, keratosis, and others.
Status:
US Previously Marketed
Source:
PROCAINE HYDROCHLORIDE by GD SEARLE LLC
(1982)
Source URL:
First marketed in 1905
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Procaine is an anesthetic agent indicated for production of local or regional anesthesia, particularly for oral surgery. Procaine (like cocaine) has the advantage of constricting blood vessels which reduces bleeding, unlike other local anesthetics like lidocaine. Procaine is an ester anesthetic. It is metabolized in the plasma by the enzyme pseudocholinesterase through hydrolysis into para-aminobenzoic acid (PABA), which is then excreted by the kidneys into the urine. Procaine acts mainly by inhibiting sodium influx through voltage gated sodium channels in the neuronal cell membrane of peripheral nerves. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is thus inhibited. The receptor site is thought to be located at the cytoplasmic (inner) portion of the sodium channel. Procaine has also been shown to bind or antagonize the function of N-methyl-D-aspartate (NMDA) receptors as well as nicotinic acetylcholine receptors and the serotonin receptor-ion channel complex.
Status:
Possibly Marketed Outside US
Source:
M016
(2024)
Source URL:
First approved in 2024
Source:
M016
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Possibly Marketed Outside US
Source:
M006
(2024)
Source URL:
First approved in 2024
Source:
M006
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)