{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for alpha root_relationships_comments in Relationship Comments (approximate match)
Status:
US Approved Rx
(2024)
Source:
NDA219249
(2024)
Source URL:
First approved in 2024
Source:
NDA219249
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Status:
US Approved Rx
(2021)
Source:
NDA213498
(2021)
Source URL:
First approved in 2021
Source:
NDA213498
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ponesimod is an experimental drug for the treatment of multiple sclerosis (MS) graft-versus-host disease and psoriasis. It acts on certain types of white blood cells (lymphocytes) which are involved in the autoimmune attack on myelin seen in multiple sclerosis (MS). Ponesimod is an orally active, reversible, and selective sphingosine-1-phosphate receptor (S1PR1) modulator. The drug is in phase II clinical trial for the treatment of graft-versus-host disease. In addition, the phase III clinical trial comparing ponesimod to teriflunomide in relapsing-remitting MS is ongoing.
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Artenimol (dihydroartemisinin) is a derivate of antimalarial compound artemisinin. Artenimol (dihydroartemisinin) is able to reach high concentrations within the parasitized erythrocytes. Its endoperoxide bridge is thought to be essential for its antimalarial activity, causing free-radical damage to parasite membrane systems including:
• Inhibition of falciparum sarcoplasmic-endoplasmic reticulum calcium ATPase, • Interference with mitochondrial electron transport • Interference with parasite transport proteins • Disruption of parasite mitochondrial function. Dihydroartemisinin in combination with piperaquine tetraphosphate (Eurartesim, EMA-approved in 2011) is indicated for the treatment of uncomplicated Plasmodium falciparum malaria. The formulation meets WHO recommendations, which advise combination treatment for Plasmodium falciparum malaria to reduce the risk of resistance development, with artemisinin-based preparations regarded as the ‘policy standard’. However, experimental testing demonstrates that, due to its intrinsic chemical instability, dihydroartemisinin is not suitable to be used in pharmaceutical formulations. In addition, data show that the currently available dihydroartemisinin preparations fail to meet the internationally accepted stability requirements.
Status:
US Approved Rx
(2019)
Source:
NDA212018
(2019)
Source URL:
First approved in 2019
Source:
NDA212018
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Erdafitinib (JNJ-42756493) is a potent and selective orally bioavailable, pan fibroblast growth factor receptor (FGFR) inhibitor with potential antineoplastic activity. It was discovered in collaboration with Janssen Pharmaceutica, N.V. from a partnership which commenced in June 2008. Astex’s FGFr inhibitor program originated from a collaboration initiated in 2005 with the Cancer Research UK Drug Discovery Group at the Newcastle Cancer Centre (Newcastle University UK), and Cancer Research Technology Limited. JNJ42756493 is currently being evaluated by Janssen in Phase 2 clinical trials in patients with urothelial cancer, advanced hepatocellular carcinoma, advanced non-small lung cancer, esophageal cancer or cholangiocarcinoma. JNJ-42756493 is a potent, oral pan-FGFR tyrosine kinase inhibitor with half-maximal inhibitory concentration values in the low nanomolar range for all members of the FGFR family (FGFR1 to FGFR4), with minimal activity on vascular endothelial growth factor receptor (VEGFR) kinases compared with FGFR kinases (approximately 20-fold potency difference). In vitro, the proliferation of cells treated with JNJ-42756493 is decreased, associated with increased apoptotic death and decreased cell survival. It is also in phase I trials for the treatment of advanced refractory solid tumors or advanced refractory hematologic cancer.
Status:
US Approved Rx
(2024)
Source:
ANDA211788
(2024)
Source URL:
First approved in 2014
Source:
NDA205437
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Apremilast (brand name Otezla) selective inhibitor of phosphodiesterase 4 is used for the treatment of patients with moderate to severe plaque psoriasis. OTEZLA is the first and only PDE4 inhibitor approved for the treatment of plaque psoriasis, a chronic inflammatory disease of the skin resulting from an uncontrolled immune response. Apremilast also inhibits spontaneous production of TNF-alpha from human rheumatoid synovial cells. It has anti-inflammatory activity. By inhibiting PDE-4, apremilast increases intracellular levels of cAMP and thereby inhibits the production of multiple proinflammatory mediators including PDE-4, TNF-alpha, interleukin-2 (IL-2), interferon-gamma, leukotrienes, and nitric oxide synthase.
Status:
US Approved Rx
(2018)
Source:
NDA211358
(2018)
Source URL:
First approved in 2012
Source:
NDA203188
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ivacaftor (trade names KALYDECO® (ivacaftor) and ORKAMBI® (lumacaftor/ivacaftor)) is a cystic fibrosis transmembrane conductance regulator potentiator indicated for the treatment of cystic fibrosis in patients age 6 years and older who have one of the following mutations in the CFTR gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, or S549R. One such defect G551D is characterized by a dysfunctional CFTR protein on the cell surface. Although the defective protein is trafficked to the correct area, the epithelial cell surface, while there it cannot transport chloride through the channel. Ivacaftor, a CFTR potentiator, improves the transport of chloride through the ion channel by binding to the channels directly to induce a non-conventional mode of gating which in turn increases the probability that the channel is open. Ivacaftor regulates fluid flow within cells and affects the components of sweat, digestive fluids, and mucus.
Status:
US Approved Rx
(2003)
Source:
NDA021487
(2003)
Source URL:
First approved in 2003
Source:
NDA021487
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
NAMENDA (marketed under the brands Namenda among others) is an N-methyl-D-aspartate (NMDA) receptor antagonist indicated for the treatment of moderate to severe dementia of the Alzheimer’s type. Persistent activation of central nervous system N-methyl-D-aspartate (NMDA) receptors by the excitatory amino acid glutamate has been hypothesized to contribute to the symptomatology of Alzheimer’s disease. Memantine is postulated to exert its therapeutic effect through its action as a low to moderate affinity uncompetitive (open-channel) NMDA receptor antagonist which binds preferentially to the NMDA receptor-operated cation channels. There is no evidence that memantine prevents or slows neurodegeneration in patients with Alzheimer’s disease. Memantine showed low to negligible affinity for GABA, benzodiazepine, dopamine, adrenergic, histamine and glycine receptors and for voltage-dependent Ca2+, Na+ or K+ channels. Memantine also showed antagonistic effects at the 5HT3 receptor with a potency similar to that for the NMDA receptor and blocked nicotinic acetylcholine receptors with one-sixth to one-tenth the potency. In vitro studies have shown that memantine does not affect the reversible inhibition of acetylcholinesterase by donepezil, galantamine, or tacrine.
Status:
US Approved Rx
(2013)
Source:
ANDA091101
(2013)
Source URL:
First approved in 1999
Source:
NDA020862
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Doxercalciferol is a synthetic vitamin D2 analog that undergoes metabolic activation in vivo to form 1α,25-dihydroxyvitamin D2 (1α,25-(OH)2D2), a naturally occurring, biologically active form of vitamin D2. Doxercalciferol is indicated for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on dialysis, as well as for the treatment of secondary hyperparathyroidism in patients with Stage 3 or Stage 4 chronic kidney disease. Doxercalciferol is marketed under the brand name Hectorol by Genzyme Corporation, and is manufactured by Catalent Pharma Solutions, Inc.
Status:
US Approved Rx
(2009)
Source:
ANDA078202
(2009)
Source URL:
First approved in 1994
Source:
RHINOCORT by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Budesonide is a glucocorticoid used in the management of asthma, the treatment of various skin disorders, allergic rhinitis and ulcerative colitis. The precise mechanism of corticosteroid actions on inflammation in asthma is not well known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory activities against multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in allergic- and non-allergic-mediated inflammation. The anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma. Commonly reported side effects of budesonide include: acne vulgaris, moon face, and bruise. Other side effects include: ankle edema, hirsutism, weakness, arthralgia, nausea, and rhinitis. Ketoconazole, a potent inhibitor of cytochrome P450 (CYP) isoenzyme 3A4 (CYP3A4), the main metabolic enzyme for corticosteroids, increased plasma levels of orally ingested budesonide.
Status:
US Approved Rx
(2008)
Source:
ANDA078085
(2008)
Source URL:
First approved in 1978
Source:
NDA017963
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Mrtoprolol is a beta-adrenergic receptor blocking agent. In vitro and in vivo animal studies have shown that it has a preferential effect
on beta-1 adrenoreceptors, chiefly located in cardiac muscle. Clinical pharmacology studies have confirmed the beta-blocking activity of metoprolol in man, as shown by (1) reduction in heart rate and cardiac output at rest and upon exercise, (2) reduction of systolic blood pressure upon exercise, (3) inhibition of isoproterenol-induced tachycardia, and (4) reduction of reflex orthostatic tachycardia. Mrtoprolol is indicated for the treatment of hypertension, angina pectoris and myocardial infarction