{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
VASOCORT HYDROXYAMPHETAMINE HYDROBROMIDE by SKF
(1961)
Source URL:
First marketed in 1935
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydroxyamphetamine is a derivative of amphetamines. Hydroxyamphetamine is intended mainly as local eye drops for diagnostic purposes. It is indirect sympathomimetic agent which cause dilation of the eye pupil before diagnostic test. Among the minor side effects from its use are: change in color vision, difficulty seeing at night, dry mouth, headache, increased sensitivity of eyes to sunlight, muscle stiffness or tightness and temporary stinging in the eyes. The main use of hydroxyamphetamines as eye drops is the diagnosis of Horner's syndrome which is characterized by nerve lesions. Hydroxyamphetamine hydrobromide is a component of FDA approved brand drug - Paremyd sterile ophthalmic solution (Hydroxyamphetamine hydrobromide, USP 1.0%, Tropicamide, USP 0.25%). Hydroxyamphetamine is an indirect-acting sympathomimetic, while tropicamide acts as a parasympatholytic.
Status:
US Previously Marketed
Source:
Vanillin U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. Vanillin is a natural substance widely found in many plant species and often used in beverages, foods, cosmetics, and pharmaceutical products. Antioxidant and anticancer potential have been described for this compound. Vanillin has been classified as
a bioantimutagen and is able to inhibit mutagenesis induced
by chemical and physical mutagens in various cell systems. Vanillin, a selective agonist of TRPV1, has been shown to attenuate i.c.v. STZ and AlCl3+d-galactose induced experimental Alzheime's disease (AD).
Status:
US Previously Marketed
Source:
SPARTASE POTASSIUM ASPARTATE by WYETH
(1961)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Disodium aspartate is used in organic biosynthesis.
Status:
US Previously Marketed
Source:
SODIUM SUCCINATE by ELKINS SINN
(1971)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Succinic acid is a dicarboxylic acid, which has multiple biological roles as a metabolic intermediate being converted into fumarate by the enzyme succinate dehydrogenase in complex 2 of the electron transport chain which is involved in making ATP, and as a signaling molecule reflecting the cellular metabolic state. Succinate is generated in mitochondria via the tricarboxylic acid cycle (TCA), an energy-yielding process shared by all organisms. Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space, changing gene expression patterns, modulating epigenetic landscape or demonstrating hormone-like signaling. Dysregulation of succinate synthesis, and therefore ATP synthesis, happens in some genetic mitochondrial diseases, such as Leigh's disease, and Mela's disease and degradation can lead to pathological conditions, such as malignant transformation, inflammation and tissue injury. Succinic acid is a precursor to some polyesters and a component of some alkyd resins. Succinic acid also serves as the bases of certain biodegradable polymers, which are of interest in tissue engineering applications. As a food additive and dietary supplement, succinic acid is generally recognized as safe by the U.S. Food and Drug Administration. Succinic acid is used primarily as an acidity regulator in the food and beverage industry. It is also available as a flavoring agent, contributing a somewhat sour and astringent component to umami taste.[11] As an excipient in pharmaceutical products, it is also used to control acidity or as a counter ion. Drugs involving succinate include metoprolol succinate, sumatriptan succinate, Doxylamine succinate or solifenacin succinate.
Status:
US Previously Marketed
Source:
Solution of Formaldehyde U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Solution of Formaldehyde U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Formaldehyde is a naturally occurring organic compound, and an important industrial precursor to many other materials and organic compounds. Formaldehyde solution (formalin) is used as a disinfectant. Formaldehyde vapors are toxic, upon entry formaldehyde reacts readily with macromolecules, including DNA to form DNA-protein and DNA-DNA cross-links.
Status:
US Previously Marketed
Source:
Betanaphthol U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
BETANAPHTHOL (or 2-Naphthol) is used as a preservative. It is known, that this compound can cause dermatitis.
Status:
US Previously Marketed
Source:
GALLOGEN
(1912)
Source URL:
First marketed in 1912
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ellagic acid is a dilactone of hexahydroxydiphenic acid, that found in numerous fruits and vegetables. Ellagic acid was first discovered by chemist Henri Braconnot in 1831. Ellagic acid is found in oaks species like the North American white oak (Quercus alba) and European red oak (Quercus robur). The highest levels of ellagic acid are found in walnuts, pecans, cranberries, raspberries, strawberries, and grapes, as well as distilled beverages. It is also found in peach, and other plant foods. Ellagic acid has antiproliferative and antioxidant properties in a number of in vitro and small-animal models. The antiproliferative properties of ellagic acid may be due to its ability to directly inhibit the DNA binding of certain carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons. As with other polyphenol antioxidants, ellagic acid has a chemoprotective effect in cellular models by reducing oxidative stress. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acid has been marketed as a dietary supplement with a range of claimed benefits against cancer, heart disease, and other medical problems. Ellagic acid has been identified by the U.S. Food and Drug Administration as a "fake cancer 'cure' consumers should avoid".
Status:
US Previously Marketed
Source:
Acetanilid U.S.P.
(1921)
Source URL:
First marketed in 1886
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Acetanilide is a synthetic organic compound introduced clinically in 1886 as a fever-reducing drug. Its effectiveness in relieving pain was discovered soon thereafter and it was used as an alternative to aspirin for many years in treating such common complaints as headaches, menstrual cramps, and rheumatism. Unfortunately, Acetanilide exhibited an unacceptable profile of toxic effects, the most alarming being cyanosis due to methemoglobinemia. The toxic profile prompted the search for supposedly less toxic aniline derivatives such as phenacetin. After several conflicting results over the ensuing fifty years, it was established in 1948 that acetanilide was mostly metabolized to paracetamol (USAN: acetaminophen) in the human body and that it was the paracetamol that was responsible for the analgesic and antipyretic properties. Paracetamol has since replaced acetanilide usage because it is less likely to induce blood disorders. The observed methemoglobinemia after acetanilide administration was ascribed to the small proportion of acetanilide that is hydrolyzed to aniline in the body. Acetanilide is no longer used as a drug in its own right, although its primary metabolite, paracetamol, has been widely succesful.
Status:
Possibly Marketed Outside US
Source:
Mincora by Allegis Pharmaceuticals, LLC
(2025)
Source URL:
First approved in 2025
Source:
Mincora by Allegis Pharmaceuticals, LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Possibly Marketed Outside US
Source:
M017
(2024)
Source URL:
First approved in 2024
Source:
M017
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)