U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 19 results

Uridine triacetate (formally PN401) is an acetylated prodrug of uridine. Following oral administration, uridine triacetate is deacetylated by nonspecific esterases present throughout the body, yielding uridine in the circulation. Uridine triacetate under VISTOGARD trade name is a uridine replacement agent approved for the emergency treatment of fluorouracil or capecitabine overdose (regardless of the presence of symptoms) or early-onset severe or life-threatening cardiac or central nervous system (CNS) toxicity and/or early-onset unusually severe adverse reactions (eg, gastrointestinal [GI] toxicity and/or neutropenia) within 96 hours following the end of fluorouracil or capecitabine administration in adult and pediatric patients. Uridine competitively inhibits cell damage and cell death caused by fluorouracil. Fluorouracil is a cytotoxic antimetabolite that interferes with nucleic acid metabolism in normal and cancer cells. Cells anabolize fluorouracil to the cytotoxic intermediates 5-fluoro-2’-deoxyuridine-5’- monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). FdUMP inhibits thymidylate synthase, blocking thymidine synthesis. Thymidine is required for DNA replication and repair. Uridine is not found in DNA. The second source of fluorouracil cytotoxicity is the incorporation of its metabolite, FUTP, into RNA. This incorporation of FUTP into RNA is proportional to systemic fluorouracil exposure. Excess circulating uridine derived from VISTOGARD is converted into uridine triphosphate (UTP), which competes with FUTP for incorporation into RNA. Uridine triacetate is also approved for the treatment of hereditary orotic aciduria under XURIDEN trade name. Uridine triacetate provides uridine in the systemic circulation of patients with hereditary orotic aciduria who cannot synthesize adequate quantities of uridine due to a genetic defect in uridine nucleotide synthesis.
Azacitidine (Vidaza; Pharmion), an inhibitor of DNA methylation, was approved by the US FDA for the treatment of myelodysplastic syndromes in May 2004. It is the first drug to be approved by the FDA for treating this rare family of bone-marrow disorders, and has been given orphan-drug status. It is also a pioneering example of an agent that targets 'epigenetic' gene silencing, a mechanism that is exploited by cancer cells to inhibit the expression of genes that counteract the malignant phenotype. VIDAZA is used for the treatment of patients with the following FAB myelodysplastic syndrome (MDS) subtypes: Refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS), refractory anemia with excess blasts (RAEB), refractory anemia with excess blasts in transformation (RAEB-T), and chronic myelomonocytic leukemia (CMMoL). Azacitidine is a pyrimidine nucleoside analog of cytidine. It is believed to exert its antineoplastic effects by causing hypomethylation of DNA and direct cytotoxicity on abnormal hematopoietic cells in the bone marrow. The concentration of azacitidine required for maximum inhibition of DNA methylation in vitro does not cause major suppression of DNA synthesis. Hypomethylation may restore normal function to genes that are critical for differentiation and proliferation. As azacitidine is a ribonucleoside, it incorporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissemble of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity. The cytotoxic effects of azacitidine cause the death of rapidly dividing cells, including cancer cells that are no longer responsive to normal growth control mechanisms. Non-proliferating cells are relatively insensitive to azacitidine.
Capecitabine is a fluoropyrimidine carbamate with antineoplastic activity. It is an orally administered systemic prodrug which is converted to 5-fluorouracil (5-FU). Both normal and tumor cells metabolize 5-FU to 5-fluoro-2’-deoxyuridine monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). These metabolites cause cell injury by two different mechanisms. First, FdUMP and the folate cofactor, N5-10-methylenetetrahydrofolate, bind to thymidylate synthase (TS) to form a covalently bound ternary complex. This binding inhibits the formation of thymidylate from 2’-deoxyuridylate. Thymidylate is the necessary precursor of thymidine triphosphate, which is essential for the synthesis of DNA, so that a deficiency of this compound can inhibit cell division. Second, nuclear transcriptional enzymes can mistakenly incorporate FUTP in place of uridine triphosphate (UTP) during the synthesis of RNA. This metabolic error can interfere with RNA processing and protein synthesis. Most common adverse reactions (≥30%) were diarrhea, hand-and-foot syndrome, nausea, vomiting, abdominal pain, fatigue/weakness, and hyperbilirubinemia. The concentration of 5-fluorouracil is increased and its toxicity may be enhanced by leucovorin.
Carmustine is a cancer medication that interferes with the growth and spread of cancer cells in the body. Carmustine is used to treat brain tumors, Hodgkin's disease, multiple myeloma, and non-Hodgkin's lymphoma. Although it is generally agreed that carmustine alkylates DNA and RNA, it is not cross-resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins. Pulmonary toxicity characterized by pulmonary infiltrates and/or fibrosis has been reported to occur from 9 days to 43 months after treatment with BiCNU and related nitrosoureas. A frequent and serious toxicity of BiCNU is delayed myelosuppression. Nausea and vomiting after intravenous administration of BiCNU are noted frequently. Greater myelotoxicity (e.g., leukopenia and neutropenia) has been reported when carmustine was combined with cimetidine.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Lomustine is used in the treatment of certain neoplastic diseases. Although it is generally agreed that lomustine alkylates DNA and RNA, it is not cross resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins. Common adverse reactions include delayed myelosupression, nausea, vomiting, stomatitis, and alopecia.
Status:
Investigational
Source:
Onkologie. Jun 1985;8(3):160-4.: Not Applicable Human clinical trial Completed Leukemia, Myeloid, Acute/mortality
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Conditions:

8-Azaguanine is a purine analog which resembles guanine close enough to compete with it in the metabolism of living organisms. It has been widely studied and has shown to cause retardation of some malignant neoplasms when administered to tumors in animals. It has been used for the treatment of patients with leukemia.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Showing 1 - 10 of 19 results