{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2021)
Source:
NDA212904
(2021)
Source URL:
First approved in 2021
Source:
NDA212904
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tivozanib (formerly AV-951, KRN-951) is a potent and selective VEGFR tyrosine kinase inhibitor and inhibits angiogenesis and vascular permeability in tumor tissues. It completed phase III a trial investigation for the treatment of renal cell carcinomas, but has not been still approved. In addition, this drug is in the phase II of clinical trial for the investigation it in patients with glioblastoma and colorectal carcinoma.
Status:
US Approved Rx
(2018)
Source:
NDA211288
(2018)
Source URL:
First approved in 2018
Source:
NDA211288
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dacomitinib is an oral, once-daily, pan-HER inhibitor. It is an irreversible inhibitor of HER-1 (EGFR), HER-2 and HER-4 tyrosine kinases. Dacomtinib is being evaluated in phase 3 clinical trials against nonsmall-cell lung cancer. Direct comparison with erlotinib did not show superiority of dacomtinib, but subgroup analysis have demonstrated that subgroup with exon 19 deletion had favorable outcomes with dacomitinib. In addition to nonsmall-cell lung cancer dacomtinib is being evaluated against esophagus, head and neck and other neoplasms. Due to its ability to pass through blood-brain barrier, dacomitinib can be used to treat brain tumors.
Status:
US Approved Rx
(2017)
Source:
NDA208716
(2017)
Source URL:
First approved in 2017
Source:
NDA208716
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Abemaciclib, previously known as LY2835219, is a potent and selective inhibitor of cyclin-dependent kinases: CDK4 and CDK6, developed by Eli Lilly, which is in clinical trial phase III for the treatment of breast cancer and non-small cell lung cancer (NSCLC) and in phase II for investigation of its treatment glioblastoma and melanoma.
Status:
US Approved Rx
(2015)
Source:
NDA208462
(2015)
Source URL:
First approved in 2015
Source:
NDA208462
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ixazomib (trade name Ninlaro) is a drug for the treatment of multiple myeloma in adults after at least one prior therapy, in combination with lenalidomide and dexamethasone. It is taken by mouth in form of capsules. Common side effects include diarrhea, constipation and low platelet count. Like the older bortezomib (which can only be given by injection), it acts as a proteasome inhibitor, has orphan drug status in the US and Europe. At therapeutic concentrations, ixazomib selectively and reversibly inhibits the protein proteasome subunit beta type-5 (PSMB5) with a dissociation half-life of 18 minutes. This mechanism is the same as of bortezomib, which has a much longer dissociation half-life of 110 minutes; the related drug carfilzomib, by contrast, blocks PSMB5 irreversibly. Proteasome subunits beta type-1 and type-2 are only inhibited at high concentrations reached in cell culture models. PSMB5 is part of the 20S proteasome complex and has enzymatic activity similar to chymotrypsin. It induces apoptosis, a type of programmed cell death, in various cancer cell lines. A synergistic effect of ixazomib and lenalidomide has been found in a large number of myeloma cell lines. The medication is taken orally as a prodrug, ixazomib citrate, which is a boronic ester; this ester rapidly hydrolyzes under physiological conditions to its biologically active form, ixazomib, a boronic acid. Absolute bioavailability is 58%, and highest blood plasma concentrations of ixazomib are reached after one hour. Plasma protein binding is 99%.
Status:
US Approved Rx
(2023)
Source:
ANDA214814
(2023)
Source URL:
First approved in 1977
Source:
NDA017422
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Carmustine is a cancer medication that interferes with the growth and spread of cancer cells in the body. Carmustine is used to treat brain tumors, Hodgkin's disease, multiple myeloma, and non-Hodgkin's lymphoma. Although it is generally agreed that carmustine alkylates DNA and RNA, it is not cross-resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins. Pulmonary toxicity characterized by pulmonary infiltrates and/or fibrosis has been reported to occur from 9 days to 43 months after treatment with BiCNU and related nitrosoureas. A frequent and serious toxicity of BiCNU is delayed myelosuppression. Nausea and vomiting after intravenous administration of BiCNU are noted frequently. Greater myelotoxicity (e.g., leukopenia and neutropenia) has been reported when carmustine was combined with cimetidine.
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
Investigational
Source:
NCT04055649: Phase 2 Interventional Recruiting Malignant Ovarian Epithelial Tumor
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
TIC10 (TIC10 isomer or ONC201 isomer) is a potent, orally active, and stable small molecule and is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The isomeric structure of TIC10/ONC201 is critical to its activity: anti-cancer activity is associated with the angular structure and not the linear TIC10 isomer. TIC10 transcriptionally induces a sustained up-regulation TRAIL in tumors and normal cells in a p53-independent manner. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 crosses the blood-brain barrier. TIC10 treatment caused tumor regression in the HCT116 p53−/− xenograft, RKO human colon cancer xenograft–bearing mice and human triple-negative breast cancer xenografts and significantly prolonged the survival of Eμ-myc transgenic mice, which spontaneously develop metastatic lymphoma from weeks 9 to 12 of age by 4 weeks.
Status:
Investigational
Source:
NCT02364206: Phase 1/Phase 2 Interventional Completed Adult Glioblastoma
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ralimetinib (LY2228820), a trisubstituted imidazole derivative, is a potent and selective, ATP-competitive inhibitor of the α- and β-isoforms of p38 mitogen-activated protein kinase. LY2228820 produced significant tumor growth delay in multiple in vivo cancer models (melanoma, non-small cell lung cancer, ovarian, glioma, myeloma, breast). Eli Lilly is developing ralimetinib for the treatment of cancer.
Status:
Investigational
Source:
NCT01331083: Phase 2 Interventional Completed Prostate Cancer
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Sonolisib (PX-866) is a small-molecule inhibitor of the alpha, gamma, and delta isoforms of phosphoinositide 3-kinase (PI3K) with potential antineoplastic activity. Sonolisib inhibits the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) and activation of the PI3K/Akt signaling pathway, which may result in inhibition of tumor cell growth and survival in susceptible tumor cell populations. Inhibition of the PI3K pathway with Sonolisib leads to inhibition of cell growth and decreased activation of downstream targets in GBM, both in vitro and in vivo, using U87–tumor-bearing mice, including Akt, S6, and mTOR. Sonolisib was in phase II clinical trials by Oncothyreon for the treatment of glioblastoma multiforme and castration-resistant prostate cancer (CRPC). It was in phase I/II clinical trials for the treatment of malignant melanoma, non-small cell lung cancer and Head and neck cancer. In clinical trials, Sonolisib was well tolerated, with common side effects being diarrhea, nausea, vomiting, and elevated liver enzymes. However, no recent development has been reported.
Status:
Investigational
Source:
NCT00689221: Phase 3 Interventional Completed Glioblastoma
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cilengitide is a cyclized Arg-Gly-Glu (RGD)-containing pentapeptide that selectively blocks activation of the αvβ3 and αvβ5 integrins. Its precursor was first synthesized in 1995 as c(RGDfV), and later modified by the incorporation of N-methyl Val c(RGDfMetV), generating the current form of the drug. Cilengitide displays subnanomolar antagonistic activity for αvβ3 and αvβ5, and is the first integrin antagonist evaluated in clinical phase I and II trials for treatment of glioblastoma and several other tumor types. Cilengitide-induced glioma cell death and inhibition of blood vessel formation may use different molecular mechanisms, including regulation of tumor hypoxia and activation of apoptotic pathways. Cilengitide inhibits cell signaling through FAK-Src-Akt and Erk mediated pathways in endothelial and tumor cells and attenuates the effect of VEGF stimulation on growth factor signaling. Cilengitide has shown encouraging activity in patients with glioblastoma as single agent, and in association with standard RT and temozolomide.