{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Source:
NCT02872753: Phase 4 Interventional Completed Meniscectomy
(2017)
Source URL:
First approved in 2011
Source:
NADA015030
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Acepromazine a potent neuroleptic agent with a low order of toxicity, is of particular value in the tranquilization of dogs, cats and horses. Its rapid action and lack of hypnotic effect are added advantages. Acepromazine is a commonly used tranquilizer/sedative in dogs, cats, horses, and other animals. Veterinarians typically prescribe acepromazine to quiet agitated animals or use it as a part of an anesthetic protocol. It is important to note that when used alone, acepromazine is not an effective pain reliever and does little if anything to relieve a pet’s anxiety or fear. Acepromazine can also be used to treat motion sickness and nausea associated with car or plane rides. The mechanism by which acepromazine decreases a pet’s alertness is not fully understood. It is thought to block dopamine receptors in the brain or inhibit the activity of dopamine in other ways.
Status:
Possibly Marketed Outside US
Source:
Lenperone by Wyeth
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lenperone (AHR 2277), or 4’-fluoro-4 [4-(p-fluorobenzoyl) piperidino] butyrophenone hydrochloride, is an antipsychotic compound which has
been shown in preliminary experiments to possess those features essential for neuroleptic activity. Dopamine antagonist.
Status:
Possibly Marketed Outside US
Source:
NCT02020408: Phase 4 Interventional Completed Eating Disorder
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Raclopride is a salicylamide neuroleptic, that acts as a selective antagonist of D2 dopamine receptors both in vitro and in vivo. Tritium-labelled raclopride has properties that demonstrate its usefulness as a radioligand for the labelling of dopamine-D2 receptors : 3H-Raclopride has a high affinity for the rat and human dopamine-D2 receptors, the non-specific binding of 3H-raclopride is very low, not exceeding 5% of the total binding and the distribution of the 3H-raclopride binding sites in the brain closely correlates with the dopaminergic innervation. The binding of 3H-raclopride is blocked by dopamine-D2 agonists and antagonists, while the D1 agonist SKF 38393 and the Dl antagonist SCH 23390 have much less potency. The interaction of dopamine with 3H-raclopride binding results in a shallow competition curve, which suggests that 3H-raclopride, similar to other dopamine-D2 radioligands, labels both high and low agonist affinity states of the dopamine-D2 receptor. The in vivo receptor binding studies performed with 3H-raclopride also demonstrate its favorable properties as a dopamine-D2 receptor marker in vivo In contrast to some other compounds used as radioligands, raclopride enters the brain readily and binds with a low component of non-specific binding in all dopamine-rich brain areas. A saturation curve may be achieved in vivo binding studies since injections of increasing concentrations of 3H-raclopride appears to be saturated at concentrations above 25 mkCi (corresponding to approximately 5 nmol/kg). Raclopride antagonizes apomorphine-induced hyperactivity in the rat at low doses (ED50 = 130 nM/kg i.p.) but induces catalepsy only at much higher doses (ED50 = 27 mkM/kg i.p.). Radiolabelled raclopride has been used as a ligand for in vitro and in vivo autoradiography in rat and primate brains. Raclopride C 11 is used with positron emission tomography (PET) as a clinical research tool to determine dopamine type 2 (D 2) receptor density in the human brain under normal and pathological conditions. For example, raclopride C 11 used in PET studies has served to confirm the age-related decrease in striatal dopamine D2 receptor density, which may be associated with a decline in the motor as well as cognitive functions. In patients with Alzheimer's disease, raclopride C 11 may be used to examine neuroreceptor distribution and quantities, which may help in the analysis of degenerative alterations of neuron populations and neuroreceptor systems in patients with this disease. In Huntington's disease, in which degeneration of neostriatal interneurons occurs (postsynaptic to the dopaminergic input), specific binding of raclopride C 11 to D 2 receptors may serve as one of the parameters in predicting performance in cognitive tasks.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Oxypertine (Equipertine, Forit, Integrin, Lanturil, Lotawin, Opertil) is a neuroleptic drug and was originally introduced as a treatment for schizophrenia in the 1960s. Oxypertine is an indole derivative with general properties similar to those of the phenothiazine, chlorpromazine. It has been given by mouth in the treatment of various psychoses including schizophrenia, mania, and disturbed behaviour, and of severe anxiety. Like reserpine and tetrabenazine, oxypertine depletes catecholamines, though not serotonin, possibly underlying its neuroleptic efficacy. The molecular structure is strongly similar to solypertine and milipertine.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Penfluridol is a highly potent; first generation diphenylbutylpiperidine antipsychotic was developed by Janssen Pharmaceutica in 1968 and is used to treat schizophrenial and similar psychotic disorders. It is, however, like most typical antipsychotics, being increasingly replaced by the atypical antipsychotics. This drug is long-acting dopamine receptor blocker.
Status:
Possibly Marketed Outside US
Source:
Afalanine by Sankyo
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
AFALANINE was developed by Medea Research in Italy and licensed to Pulitzer. Phase III clinical trials of MR 708 were completed by Pulitzer. Antidepressant; Antiparkinsonian; Neuroprotectant; Nootropic, Dopamine receptor agonist, was used to treat Major depressive disorder.
Status:
US Approved Rx
(2009)
Source:
ANDA090411
(2009)
Source URL:
First approved in 1997
Source:
REQUIP by GLAXOSMITHKLINE LLC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ropinirole (INN; trade names Requip, Repreve, Ronirol, Adartrel) is a dopamine agonist of the non-ergoline class of medications, used in the treatment of Parkinson's disease and restless legs syndrome. Although the precise mechanism of action of ropinirole as a treatment for Parkinson's disease is unknown, it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that ropinirole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum. Ropinirole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The mechanism of ropinirole-induced postural hypotension is presumed to be due to a D2 -mediated blunting of the noradrenergic response to standing and subsequent decrease in peripheral vascular resistance. Ropinirole can cause nausea, dizziness, hallucinations, orthostatic hypotension, and sudden sleep attacks during the daytime. Unusual side effects specific to D3 agonists such as ropinirole and pramipexole can include hypersexuality, punding, and compulsive gambling, even in patients without a history of these behaviors.
Status:
US Approved Rx
(2018)
Source:
ANDA207707
(2018)
Source URL:
First approved in 1974
Source:
INTROPIN by HOSPIRA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dopamine, a sympathomimetic amine vasopressor, is the naturally occurring immediate precursor of norepinephrine. G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Dopamine HCl is indicated for the correction of hemodynamic imbalances present in the shock syndrome due to myocardial infarction, trauma, endotoxic septicemia, open-heart surgery, renal failure, and chronic cardiac decompensation as in congestive failure.
Status:
US Approved Rx
(2018)
Source:
ANDA207707
(2018)
Source URL:
First approved in 1974
Source:
INTROPIN by HOSPIRA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dopamine, a sympathomimetic amine vasopressor, is the naturally occurring immediate precursor of norepinephrine. G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Dopamine HCl is indicated for the correction of hemodynamic imbalances present in the shock syndrome due to myocardial infarction, trauma, endotoxic septicemia, open-heart surgery, renal failure, and chronic cardiac decompensation as in congestive failure.
Status:
US Approved Rx
(2019)
Source:
ANDA210341
(2019)
Source URL:
First approved in 1970
Source:
DOPAR by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.