U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 241 - 250 of 8297 results

Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Ertapenem is a carbapenem antibiotic marketed by Merck as Invanz. The bactericidal activity of ertapenem results from the inhibition of cell wall synthesis and is mediated through ertapenem binding to penicillin binding proteins (PBPs). In Escherichia coli, it has strong affinity toward PBPs 1a, 1b, 2, 3, 4 and 5 with preference for PBPs 2 and 3. Ertapenem has been designed to be effective against Gram-negative and Gram-positive bacteria. The most common drug-related adverse experiences in patients treated with INVANZ, including those who were switched to therapy with an oral antimicrobial, were diarrhea (5.5%), infused vein complication (3.7%), nausea (3.1%), headache (2.2%), vaginitis in females (2.1%), phlebitis/thrombophlebitis (1.3%), and vomiting (1.1%). The coadministration with probenecid to extend the half-life of ertapenem is not recommended.
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).
Zoledronic acid (Reclast, Aclasta, Zometa) is an intravenous, highly potent amino-bisphosphonate approved worldwide, including in the USA, EU and Japan for use in patients with primary or secondary osteoporosis or low bone mass (approved indications vary between countries). Its high affinity to and long half-life in bone, and long duration of action allow for once-yearly administration, which has the potential to improve adherence to therapy. Zoledronic acid once yearly for up to 3 years improved bone mineral density (BMD) at several skeletal sites, reduced fracture risk and bone turnover, and/or preserved bone structure and mass relative to placebo in clinical studies in patients with primary or secondary osteoporosis. While additional benefits were seen when treatment was continued for up to 6 years, as evidenced by a reduced risk of vertebral fractures and higher BMD relative to 3 years’ therapy, there was the minimal advantage of treatment beyond 6 years. Therefore, in patients with low fracture risk, treatment discontinuation should be considered after approximately 5 years’ therapy. Zoledronic acid administered annually or once in 2 years was also effective in preventing bone loss in patients with low bone mass. Zoledronic acid was generally well tolerated, with the most common adverse events (AEs) being transient, mild-to-moderate post-infusion symptoms, which decreased with subsequent infusions.
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.
Dexmethylphenidate is the dextrorotary form of methylphenidate. Dexmethylphenidate is marketed under the trade name Focalin. Focalin (dexmethylphenidate hydrochloride) is the d-threo-enantiomer of racemic methylphenidate hydrochloride, which is a 50/50 mixture of the d-threo and l-threoenantiomers. Focalin is a central nervous system (CNS) stimulant, available in three tablet strengths. Each tablet contains dexmethylphenidate hydrochloride 2.5, 5, or 10 mg for oral administration. Dexmethylphenidate is used as a treatment for ADHD, ideally in conjunction with psychological, educational, behavioral or other forms of treatment. Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Methylphenidate is a catecholamine reuptake inhibitor that indirectly increases catecholaminergic neurotransmission by inhibiting the dopamine transporter (DAT) and norepinephrine transporter (NET), which are responsible for clearing catecholamines from the synapse, particularly in the striatum and meso-limbic system.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fondaparinux is a synthetic and specific inhibitor of activated Factor X (Xa). By selectively binding to antithrombin III (ATIII), fondaparinux sodium potentiates (about 300 times) the innate neutralization of Factor Xa by ATIII. Neutralization of Factor Xa interrupts the blood coagulation cascade and thus inhibits thrombin formation and thrombus development. Fondaparinux is indicated for the prophylaxis of deep vein thrombosis (DVT), which may lead to pulmonary embolism (PE): in patients undergoing hip fracture surgery, including extended prophylaxis; in patients undergoing hip replacement surgery; in patients undergoing knee replacement surgery; in patients undergoing abdominal surgery who are at risk for thromboembolic complications. The most serious adverse reactions reported with Fondaparinux are bleeding complications and thrombocytopenia. Agents that may enhance the risk of hemorrhage should be discontinued prior to initiation of therapy with Fondaparinux unless these agents are essential.
Dutasteride is a synthetic 4-azasteroid compound that is a selective inhibitor of both the type 1 and type 2 isoforms of steroid 5 alpha-reductase (5AR), intracellular enzymes that convert testosterone to 5 alpha-dihydrotestosterone (DHT). Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Dutasteride inhibits the conversion of testosterone to 5 alpha-dihydrotestosterone (DHT), which is the androgen primarily responsible for the initial development and subsequent enlargement of the prostate gland. Testosterone is converted to DHT by the enzyme 5 alpha-reductase, which exists as 2 isoforms, type 1 and type 2. Dutasteride is a competitive and specific inhibitor of both type 1 and type 2 5 alpha-reductase isoenzymes, with which it forms a stable enzyme complex. Dissociation from this complex has been evaluated under in vitro and in vivo conditions and is extremely slow. Used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate gland to improve symptoms, and reduce the risk of acute urinary retention and the need for surgery. Marketed under the brand name Avodart.
Zonisamide is an antiseizure drug chemically classified as a sulfonamide and unrelated to other antiseizure agents. The precise mechanism by which zonisamide exerts its antiseizure effect is unknown, although it is believed that the drug blocks sodium and calcium channels, which leads to the suppression of neuronal hypersynchronization (i.e. convulsions). Sonisamide has also been found to potentiate dopaminergic and serotonergic neurotransmission but does not appear to potentiate syanptic activity by GABA (gamma amino butyric acid). Zonisamide binds to sodium channels and voltage sensitive calcium channels, which suppresses neuronal depolarization and hypersynchronization. Zonisamide also inhibits carbonic anhydrase to a weaker extent, but such an effect is not thought to contribute substantially to the drug's anticonvulsant activity. Zonisamide is approved in the United States, United Kingdom, and Australia for adjunctive treatment of partial seizures in adults and in Japan for both adjunctive and monotherapy for partial seizures (simple, complex, secondarily generalized), generalized (tonic, tonic-clonic (grand mal), and atypical absence) and combined seizures.
Pantoprazole is a proton pump inhibitor that inhibits gastric acid secretion and used for short-term treatment of erosive esophagitis associated with gastroesophageal reflux disease. Pantoprazole suppresses the final step in gastric acid production by covalently binding to the (H+, K+)-ATPase enzyme system at the secretory surface of the gastric parietal cell. This effect leads to inhibition of both basal and stimulated gastric acid secretion, irrespective of the stimulus. The binding to the (H+, K+)-ATPase results in a duration of antisecretory effect that persists longer than 24 hours. Pantoprazole is used for short-term treatment of erosion and ulceration of the esophagus for adults and pediatric patients 5 years of age and older caused by gastroesophageal reflux disease. It can be used as a maintenance therapy for long-term use after initial response is obtained, but there have not been any controlled studies about the use of pantoprazole past a duration of 12 months. Pantoprazole may also be used in combination with antibiotics to treat ulcers caused by Helicobacter pylori. Use of pantoprazole may increase the chance of developing infections such as pneumonia, particularly in hospitalized patients.