U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 321 - 330 of 1057 results

Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ethinyl estradiol is a synthetic derivative of the natural estrogen estradiol. It is one of two estrogens currently used in oral contraceptive pills. The other, mestranol, is converted to ethinyl estradiol before it is biologically active. Ethinyl estradiol and norethindrone are used together as an oral contraceptive agent. Estrogens diffuse into their target cells and interact with a protein receptor. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. This cascade is initiated by initially binding to the estrogen receptors. The combination of an estrogen with a progestin suppresses the hypothalamic-pituitary system, decreasing the secretion of gonadotropin-releasing hormone (GnRH). Used for treatment of moderate to severe vasomotor symptoms associated with the menopause, female hypogonadism, prostatic carcinoma-palliative therapy of advanced disease, breast cancer, as an oral contraceptive, and as emergency contraceptive.
Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. As a bile acid, deoxycholic acid emulsifies fat in the gut. Synthetically derived deoxycholic acid, when injected, stimulates a targeted breakdown of adipose cells by disrupting the cell membrane and causing adipocytolysis. This results in an inflammatory reaction and clearing of the adipose tissue remnants by macrophages. Deoxycholic acid's actions are reduced by albumin and tissue-associated proteins, therefore its effect is limited to protein-poor subcutaneous fat tissue. Protein-rich tissues like muscle and skin are unaffected by deoxycholic acid, contributing to its safety profile. Deoxycholic acid is a cytolytic agent. The physiologic effect of deoxycholic acid is by means of decreased cell membrane integrity. Deoxycholic acid inhibits miR-21 expression in primary rat hepatocytes in a dose-dependent manner, and increases miR-21 pro-apoptotic target programmed cell death 4 (PDCD4) and apoptosis. Deoxycholic acid decreases NF-κB activity, shown to represent an upstream mechanism leading to modulation of the miR-21/PDCD4 pathway.
Status:
First marketed in 1921
Source:
vitamin D
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cholecalciferol (/ˌkoʊləkælˈsɪfərɒl/) (vitamin D3) is one of the five forms of vitamin D. Cholecalciferol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestation of vitamin D deficiency is rickets, which is seen in children and results in bony deformities including bowed long bones. Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet (UV) B radiation with a wavelength of 290–320 nanometers penetrates uncovered skin and converts cutaneous 7-dehydrocholesterol to previtamin D3, which in turn becomes vitamin D3. In supplements and fortified foods, vitamin D is available in two forms, D2 (ergocalciferol) and D3 (cholecalciferol) that differ chemically only in their side-chain structure. Vitamin D2 is manufactured by the UV irradiation of ergosterol in yeast, and vitamin D3 is manufactured by the irradiation of 7-dehydrocholesterol from lanolin and the chemical conversion of cholesterol. The two forms have traditionally been regarded as equivalent based on their ability to cure rickets and, indeed, most steps involved in the metabolism and actions of vitamin D2 and vitamin D3 are identical. Both forms (as well as vitamin D in foods and from cutaneous synthesis) effectively raise serum 25(OH) D levels. Firm conclusions about any different effects of these two forms of vitamin D cannot be drawn. However, it appears that at nutritional doses, vitamins D2 and D3 are equivalent, but at high doses, vitamin D2 is less potent. The American Academy of Pediatrics (AAP) recommends that exclusively and partially breastfed infants receive supplements of 400 IU/day of vitamin D shortly after birth and continue to receive these supplements until they are weaned and consume ≥1,000 mL/day of vitamin D-fortified formula or whole milk. Cholecalciferol is used in diet supplementary to treat Vitamin D Deficiency. Cholecalciferol is inactive: it is converted to its active form by two hydroxylations: the first in the liver, the second in the kidney, to form calcitriol, whose action is mediated by the vitamin D receptor, a nuclear receptor which regulates the synthesis of hundreds of enzymes and is present in virtually every cell in the body. Calcitriol increases the serum calcium concentrations by increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein.
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
First marketed in 1880
Source:
apomorphia
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Apomorphine (brand names: Apokyn, Ixense, Spontane, Uprima) is indicated for the acute, intermittent treatment of hypomobility, “off” episodes (“end-of-dose wearing off” and unpredictable “on/off” episodes) in patients with advanced Parkinson’s disease. Apomorphine has been studied as an adjunct to other medications. It is a non-ergoline dopamine agonist with high in vitro binding affinity for the dopamine D4 receptor, and moderate affinity for the dopamine D2, D3, and D5, and adrenergic α1D, α2B, α2C receptors. The precise mechanism of action as a treatment for Parkinson’s disease is unknown, although it is believed to be due to stimulation of post-synaptic dopamine D2-type receptors within the caudate-putamen in the brain.
Cocaine is an alkaloid ester extracted from the leaves of plants including coca. Cocaine is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine is addictive due to its effect on the reward pathway in the brain. After a short period of use, there is a high risk that dependence will occur. Its use also increases the risk of stroke, myocardial infarction, lung problems in those who smoke it, blood infections, and sudden cardiac death. Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar which can result in additional toxicity. Following repeated doses, a person may have decreased the ability to feel pleasure and be very physically tired. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This results in greater concentrations of these three neurotransmitters in the brain. It can easily cross the blood-brain barrier and may lead to the breakdown of the barrier.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(7) cough/cold:nasal decongestant oxymetazoline hydrochloride
Source URL:
First approved in 1964
Source:
Afrin by Schering
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Oxymetazoline is an adrenergic alpha-agonist, direct acting sympathomimetic, used as a vasoconstrictor to relieve nasal congestion The sympathomimetic action of oxymetazoline constricts the smaller arterioles of the nasal passages, producing a prolonged (up to 12 hours), gentle and decongesting effect. Oxymetazoline elicits relief of conjunctival hyperemia by causing vasoconstriction of superficial conjunctival blood vessels. The drug's action has been demonstrated in acute allergic conjunctivitis and in chemical (chloride) conjunctivitis. Oxymetazoline is self-medication for temporary relief of nasal congestion associated with the common cold, hay fever, or other upper respiratory allergies. Oxymetazoline is available over-the-counter as a topical decongestant in the form of oxymetazoline hydrochloride in nasal sprays such as Afrin, Operil, Dristan, Dimetapp, oxyspray, Facimin, Nasivin, Nostrilla, Sudafed OM, Vicks Sinex, Zicam, SinuFrin, and Mucinex Full Force. Due to its vasoconstricting properties, oxymetazoline is also used to treat nose bleeds and eye redness.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(3) cough/cold:antitussive dextromethorphan
Source URL:
First approved in 1954
Source:
Romilar by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dextromethorphan is a non-narcotic morphine derivative widely used as an antitussive for almost 40 years. It has attracted attention due to its anticonvulsant and neuroprotective properties. It is a cough suppressant in many over-the-counter cold and cough medicines. In 2010, the FDA approved the combination product dextromethorphan/quinidine for the treatment of pseudobulbar affect. Dextromethorphan suppresses the cough reflex by a direct action on the cough center in the medulla of the brain. Dextromethorphan shows high-affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist and acts as a non-competitive channel blocker. It is one of the widely used antitussives and is used to study the involvement of glutamate receptors in neurotoxicity. Dextromethorphan (DM) is a sigma-1 receptor agonist and an uncompetitive NMDA receptor antagonist. The mechanism by which dextromethorphan exerts therapeutic effects in patients with pseudobulbar affect is unknown. Dextromethorphan should not be taken with monoamine oxidase inhibitors due to the potential for serotonin syndrome. Dextromethorphan is extensively metabolized by CYP2D6 to dextrorphan, which is rapidly glucuronidated and unable to cross the blood-brain barrier.
TIC10 (TIC10 isomer or ONC201 isomer) is a potent, orally active, and stable small molecule and is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The isomeric structure of TIC10/ONC201 is critical to its activity: anti-cancer activity is associated with the angular structure and not the linear TIC10 isomer. TIC10 transcriptionally induces a sustained up-regulation TRAIL in tumors and normal cells in a p53-independent manner. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 crosses the blood-brain barrier. TIC10 treatment caused tumor regression in the HCT116 p53−/− xenograft, RKO human colon cancer xenograft–bearing mice and human triple-negative breast cancer xenografts and significantly prolonged the survival of Eμ-myc transgenic mice, which spontaneously develop metastatic lymphoma from weeks 9 to 12 of age by 4 weeks.