U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1891 - 1900 of 4002 results

mixture
Status:
Other

Class:
MIXTURE


Conditions:

Isoniazid pyruvate is a metabolite of isoniazid. Isoniazid (Laniazid, Nydrazid), also known as isonicotinylhydrazine (INH), is an organic compound that is the first-line medication in prevention and treatment of tuberculosis. It has been claimed that isoniazone pyruvate causes less excretion of pyridoxine than isoniazid and might therefore be less likely to cause peripheral neuritis.
Abamectin is a mixture of avermectins containing avermectin B1a and avermectin B1b. These two components, B1a and B1b have very similar biological and toxicological properties. The avermectins are insecticidal or anthelmintic compounds derived from the soil bacterium Streptomyces avermitilis. Abamectin is used to control insect and mite pests of a range of agronomic, fruit, vegetable and ornamental crops and it is used by homeowners for control of fire ants. Abamectin acts on insects by interfering with neural and neuromuscular transmission. Abamectin attenuated ethanol-induced gastric ulceration. Chemical structure and effects on GABAARs and P2X4Rs receptor function play key roles in the ability of avermectin to reduce ethanol intake
Gamma-oryzanol is a naturally occurring component in rice bran and rice germ, which consists of a mixture of ferulic acid esters of sterols and triterpene alcohols. The mechanism of action of gamma-oryzanol is believed to be involved in the metabolism of catecholamine in the hypothalamus. The antioxidant effect of gamma-oryzanol was well documented and excellent in inhibiting lipid peroxidation. Isolation, extraction, and purification of gamma oryzanol were first reported in the mid-1950s. It has been sold in Japan as a medicine since 1962, first to treat anxiety and later in menopause. Gamma oryzanol and rice bran oil therapy have been used to manage elevated cholesterol and triglyceride levels since the late 1980s. No human clinical studies reported adverse effects of rice bran or its fiber fraction.
Nabiximols (USAN, trade name Sativex) is a specific extract of Cannabis that was approved as a botanical drug in the United Kingdom in 2010 as a mouth spray to alleviate neuropathic pain, spasticity, overactive bladder, and other symptoms of multiple sclerosis. Nabiximols is an oromucosal spray of a formulated extract of the cannabis sativa plant that contains the principal cannabinoids tetrahydrocannabinol (THC) and cannabidiol (CBD) as well as specific minor cannabinoids and other non-cannabinoid components. THC is a partial agonist and can block activation by other ligands of both cannabinoid receptors (CBR). THC effects include analgesia, short-term memory loss, muscle relaxation, antiemesis, appetite stimulation, and anti-inflammatory activity. CBD acts on CBR and TRPV1, while also inhibiting reuptake and hydrolysis of anandamide N-arachidonylethanolamine (AEA). CBD effects include anticonvulsant, muscle relaxant, anxiolytic, neuroprotective, antioxidant, anti-inflammatory, immunomodulatory and anti-psychotic activity. CBD modulates some of the more undesirable psychological adverse effects of THC through both pharmacokinetic and pharmacodynamic effects. Each 100 μl spray contains: 2.7 mg of THC and 2.5 mg of CBD. Nabiximols was approved in other European countries and Canada.
mixture
Status:
Possibly Marketed Outside US

Class:
MIXTURE

Targets:


Semustine is a methylated derivative of carmustine with potent antineoplastic activity. As an alkylating agent, semustine forms covalent linkages with nucleophilic centers in DNA, causing depurination, base-pair miscoding, strand scission, and DNA-DNA cross-linking, which may result in cytotoxicity. Semustine is primarily used to treat brain tumors, colorectal tumors, lymphomas, and stomach cancer.
Angiotensin is a peptide hormone that causes vasoconstriction and a subsequent increase in blood pressure. It is part of the renin-angiotensin system, which is a major target for drugs that lower blood pressure. Angiotensin also stimulates the release of aldosterone, another hormone, from the adrenal cortex. Aldosterone promotes sodium retention in the distal nephron, in the kidney, which also drives blood pressure up. Angiotensin is an oligopeptide and is a hormone and a powerful dipsogen. Angiotensin I is derived from the precursor molecule angiotensinogen, a serum globulin produced in the liver. Angiotensin I is converted to angiotensin II (AII) through removal of two C-terminal residues by the enzyme angiotensin-converting enzyme (ACE), primarily through ACE within the lung (but also present in endothelial cells and kidney epithelial cells). ACE found in other tissues of the body has no physiological role (ACE has a high density in the lung, but activation here promotes no vasoconstriction, angiotensin II is below physiological levels of action). Angiotensin II acts as an endocrine, autocrine/paracrine, and intracrine hormone. Angiotensin II has prothrombotic potential through adhesion and aggregation of platelets and stimulation of PAI-1 and PAI-2. When cardiac cell growth is stimulated, a local (autocrine-paracrine) renin-angiotensin system is activated in the cardiac myocyte, which stimulates cardiac cell growth through protein kinase C. The same system can be activated in smooth muscle cells in conditions of hypertension, atherosclerosis, or endothelial damage. Angiotensin II is the most important Gq stimulator of the heart during hypertrophy, compared to endothelin-1 and α1 adrenoreceptors. Angiotensin II increases thirst sensation (dipsogen) through the subfornical organ of the brain, decreases the response of the baroreceptor reflex, and increases the desire for salt. It increases secretion of ADH in the posterior pituitary and secretion of ACTH in the anterior pituitary. It also potentiates the release of norepinephrine by direct action on postganglionic sympathetic fibers. Angiotensin II acts on the adrenal cortex, causing it to release aldosterone, a hormone that causes the kidneys to retain sodium and lose potassium. Elevated plasma angiotensin II levels are responsible for the elevated aldosterone levels present during the luteal phase of the menstrual cycle. Angiotensin II has a direct effect on the proximal tubules to increase Na+ reabsorption. It has a complex and variable effect on glomerular filtration and renal blood flow depending on the setting. Increases in systemic blood pressure will maintain renal perfusion pressure; however, constriction of the afferent and efferent glomerular arterioles will tend to restrict renal blood flow. The effect on the efferent arteriolar resistance is, however, markedly greater, in part due to its smaller basal diameter; this tends to increase glomerular capillary hydrostatic pressure and maintain glomerular filtration rate. A number of other mechanisms can affect renal blood flow and GFR. High concentrations of Angiotensin II can constrict the glomerular mesangium, reducing the area for glomerular filtration. Angiotensin II is a sensitizer to tubuloglomerular feedback, preventing an excessive rise in GFR. Angiotensin II causes the local release of prostaglandins, which, in turn, antagonize renal vasoconstriction. The net effect of these competing mechanisms on glomerular filtration will vary with the physiological and pharmacological environment. Angiotensin was independently isolated in Indianapolis and Argentina in the late 1930s (as 'angiotonin' and 'hypertensin', respectively) and subsequently characterised and synthesized by groups at the Cleveland Clinic and Ciba laboratories in Basel, Switzerland.
Plecanatide (SP-304) is a synthetic, 16-amino acid peptide with 2 disulfide bonds that is a secondin-class guanylate cyclase-C (GC-C) receptor agonist. Plecanatide (brand name Trulance) was approved in January 2017 by the FDA for the treatment of chronic idiopathic constipation (CIC). Plecanatide stimulates intestinal fluid secretions in the gastrointestinal tract to support regular bowel function. Plecanatide, taken orally once daily, works locally in the upper GI tract to stimulate secretion of intestinal fluid and support regular bowel function. Plecanatide is structurally related to human uroguanylin, and similar to uroguanylin, plecanatide functions as a guanylate cyclase-C (GC-C) agonist. Both plecanatide and its active metabolite bind to GC-C and act locally on the luminal surface of the intestinal epithelium. Activation of GC-C results in an increase in both intracellular and extracellular concentrations of cyclic guanosine monophosphate (cGMP). Elevation of intracellular cGMP stimulates secretion of chloride and bicarbonate into the intestinal lumen, mainly through activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel, resulting in increased intestinal fluid and accelerated transit. In animal models, plecanatide has been shown to increase fluid secretion into the gastrointestinal (GI) tract, accelerate intestinal transit, and cause changes in stool consistency.
Argipressin is a neurohypophysial hormone from the vasopressin hormone family. Its two primary functions are to retain water in the body and to constrict blood vessels. The antidiuretic action of Argipressin is ascribed to increase in reabsorption of water by the renal tubules. Argipressin can cause contraction of smooth muscle of the gastrointestinal tract, gall bladder, urinary bladder and all parts of the vascular bed, especially the capillaries, small arterioles and venules with less effect on the smooth musculature of the large veins. Agripressin for injections is used for use in diabetes insipidus, when this is not of nephrogenic origin and control of bleeding from oesophageal varices. In addition, argipressin is indicated to increase blood pressure in adults with vasodilatory shock (e.g., post-cardiotomy or sepsis) who remain hypotensive despite fluids and catecholamines.
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
Angiotensin (1-7) [Ang 1-7] is a 7 amino acid peptide generated predominantly from Ang II by the action of Ang-converting enzyme 2. Ang 1-7 can act as a negative modulator of aldosterone secretion in vitro and in vivo. The endogenous heptapeptide angiotensin-(1-7) (Ang-(1-7)) is a RAS component that has a central role in the alternative axis. It is generated by the cleavage of Ang-II by the action of the angiotensin converting enzyme 2 (ACE 2) and acts via interaction with the G-protein coupled receptor Mas. Angiotensin (1-7) induces vasorelaxation through release of NO and prostaglandins, perhaps through activation of a non-AT1, non-AT2 receptor, Mas. Counteracts the vasoconstrictive and proliferative effects of angiotensin II and stimulates vasopressin (anti-diuretic hormone) release in vivo. Clinical uses range from treatment of cardiovascular-related diseases, ocular pathologies, metabolic dysfunctions, brain conditions and degenerative diseases to applications in cell differentiation and hematopoiesis, tumor therapy, acute lung injury, fibrosis, infection, among others. Tarix Orphan is developing TXA127 for rare neuromuscular and connective tissue diseases. TXA127 is a pharmaceutical formulation of the naturally occurring peptide, Angiotensin (1-7). TXA127 has been effective in animal models of Duchenne muscular dystrophy (DMD), Limb-girdle muscular dystrophy (LGMD), congenital muscular dystrophy MDC1A, Marfan syndrome, and Dystrophic Epidermolysis Bullosa (DEB). FDA granted rare pediatric disease designation to TXA127 from Tarix to treat recessive dystrophic epidermolysis bullosa (RDEB). TXA127 has been granted orphan drug status by FDA as a treatment for pulmonary arterial hypertension, to enhance engraftment in patients receiving a stem cell transplant, and for Myelodysplastic Syndrome (MDS). Tarix Orphan has broad IP protection for TXA127 and Orphan Drug Designations (ODDs) have been granted for DMD LGMD and DEB in the U.S., and for DMD in Europe. Tarix Orphan aims to initiate a clinical trials for both DMD and DEB in early 2018 and has an active IND for a Phase II trial in DMD, as well as Fast Track designation for DMD.

Showing 1891 - 1900 of 4002 results