U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Atorvastatin calcium (LIPITOR®) is a pyrrole and heptanoic acid derivative, a synthetic lipid-lowering agent. Atorvastatin is a selective, competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin is used to reduce serum levels of LDL(low-density lipoprotein)-cholesterol; apolipoprotein B; and triglycerides and to increase serum levels of HDL(high-density lipoprotein)-cholesterol in the treatment of hyperlipidemias and prevention of cardiovascular disease in patients with multiple risk factors.
Sotalol has both beta-adrenoreceptor blocking and cardiac action potential duration prolongation antiarrhythmic properties. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. It is FDA approved for the treatment of ventricular arrhythmias, symptomatic atrial fibtillation, symptomatic atriall flutter. Common adverse reactions include bradyarrhythmia, chest pain, lightheadedness, palpitations, rash, nausea, dizziness, headache, dyspnea, fatigue. Proarrhythmic events were more common in sotalol treated patients also receiving digoxin. Sotalol should be administered with caution in conjunction with calcium blocking drugs because of possible additive effects on atrioventricular conduction or ventricular function. Patients treated with sotalol plus a catecholamine depletor should therefore be closely monitored for evidence of hypotension and/or marked bradycardia which may produce syncope.
Bisoprolol is a cardioselective beta1-adrenergic blocking agent. It lower the heart rate and blood pressure and may be used to reduce workload on the heart and hence oxygen demands. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Bisoprolol can be used to treat cardiovascular diseases such as hypertension, coronary heart disease, arrhythmias, ischemic heart diseases, and myocardial infarction after the acute event. General side effects are: fatigue, asthenia, chest pain, malaise, edema, weight gain, angioedema. Concurrent use of rifampin increases the metabolic clearance of bisoprolol fumarate, shortening its elimination half-life.
Pravastatin (marketed as Pravachol or Selektine) is a member of the drug class of statins, used in combination with diet, exercise, and weight loss for lowering cholesterol and preventing cardiovascular disease. Pravastatin acts as a lipoprotein-lowering drug through two pathways. In the major pathway, pravastatin inhibits the function of hydroxymethylglutaryl-CoA (HMG-CoA) reductase. As a reversible competitive inhibitor, pravastatin sterically hinders the action of HMG-CoA reductase by occupying the active site of the enzyme. Taking place primarily in the liver, this enzyme is responsible for the conversion of HMG-CoA to mevalonate in the rate-limiting step of the biosynthetic pathway for cholesterol. Pravastatin also inhibits the synthesis of very-low-density lipoproteins, which are the precursor to low-density lipoproteins (LDL). These reductions increase the number of cellular LDL receptors, thus LDL uptake increases, removing it from the bloodstream. Pravastatin is primarily used for the treatment of dyslipidemia and the prevention of cardiovascular disease. It is recommended to be used only after other measures, such as diet, exercise, and weight reduction, have not improved cholesterol levels. The evidence for the use of pravastatin is generally weaker than for other statins. The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT), failed to demonstrate a difference in all-cause mortality or nonfatal myocardial infarction/fatal coronary heart disease rates between patients receiving pravastatin 40 mg daily (a common starting dose) and those receiving usual care. Pravastatin is generally well tolerated; adverse reactions have usually been mild and transient. In 4-month-long placebo-controlled trials, 1.7% of Pravastatin-treated patients and 1.2% of placebo-treated patients were discontinued from treatment because of adverse experiences attributed to study drug therapy; this difference was not statistically significant.
Ticlopidine (trade name Ticlid) is an antiplatelet drug in the thienopyridine family which is an adenosine diphosphate (ADP) receptor inhibitor. Ticlopidine is a prodrug that is metabolized to an as yet undetermined metabolite that acts as a platelet aggregation inhibitor. Inhibition of platelet aggregation causes a prolongation of bleeding time. In its prodrug form, ticlopidine has no significance in vitro activity at the concentrations attained in vivo. The active metabolite of ticlopidine prevents binding of adenosine diphosphate (ADP) to its platelet receptor, impairing the ADP-mediated activation of the glycoprotein GPIIb/IIIa complex. It is proposed that the inhibition involves a defect in the mobilization from the storage sites of the platelet granules to the outer membrane. No direct interference occurs with the GPIIb/IIIa receptor. As the glycoprotein GPIIb/IIIa complex is the major receptor for fibrinogen, its impaired activation prevents fibrinogen binding to platelets and inhibits platelet aggregation. Ticlopidine is FDA approved for the prevention of strokes and, when combined with aspirin, for patients with a new coronary stent to prevent closure. There are also several off-label uses, including acute treatment of myocardial infarction and unstable angina, peripheral vascular disease, prevention of myocardial infarctions, diabetic retinopathy, and sickle cell disease. The most serious side effects associated with ticlopidine are those that affect the blood cells, although these life-threatening complications are relatively rare.
Mrtoprolol is a beta-adrenergic receptor blocking agent. In vitro and in vivo animal studies have shown that it has a preferential effect on beta-1 adrenoreceptors, chiefly located in cardiac muscle. Clinical pharmacology studies have confirmed the beta-blocking activity of metoprolol in man, as shown by (1) reduction in heart rate and cardiac output at rest and upon exercise, (2) reduction of systolic blood pressure upon exercise, (3) inhibition of isoproterenol-induced tachycardia, and (4) reduction of reflex orthostatic tachycardia. Mrtoprolol is indicated for the treatment of hypertension, angina pectoris and myocardial infarction
Status:
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)



Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
First approved in 1956
Source:
Rapacodin by Knoll
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dihydrocodeine is an opioid analgesic used as an alternative or adjunct to codeine to treat moderate to severe pain, severe dyspnea, and cough. It is semi-synthetic, and was developed in Germany in 1908 during an international search to find a more effective antitussive agent to help reduce the spread of airborne infectious diseases such as tuburculosis. It was marketed in 1911. Dihydrocodeine is metabolized to dihydromorphine -- a highly active metabolite with a high affinity for mu opioid receptors. Dihydrocodeine is used for the treatment of moderate to severe pain, including post-operative and dental pain. It can also be used to treat chronic pain, breathlessness and coughing. In heroin addicts, dihydrocodeine has been used as a substitute drug, in doses up to 2500mg/day to treat addiction.
Status:
First approved in 1950
Source:
Trigesic by Squibb
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Acetaminophen, also known as paracetamol, is commonly used for its analgesic and antipyretic effects. Its therapeutic effects are similar to salicylates, but it lacks anti-inflammatory, antiplatelet, and gastric ulcerative effects. Acetaminophen (USAN) or Paracetamol (INN) is a widely used analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains. It is a major ingredient in numerous cold and flu medications and many prescription analgesics. It is extremely safe in standard doses, but because of its wide availability, deliberate or accidental overdoses are not uncommon. Acetaminophen, unlike other common analgesics such as aspirin and ibuprofen, has no anti-inflammatory properties or effects on platelet function, and it is not a member of the class of drugs known as non-steroidal anti-inflammatory drugs or NSAIDs. At therapeutic doses, acetaminophen does not irritate the lining of the stomach nor affect blood coagulation, kidney function, or the fetal ductus arteriosus (as NSAIDs can). Acetaminophen is thought to act primarily in the CNS, increasing the pain threshold by inhibiting both isoforms of cyclooxygenase, COX-1, COX-2, and COX-3 enzymes involved in prostaglandin (PG) synthesis. Unlike NSAIDs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues and, thus, has no peripheral anti-inflammatory affects. Acetaminophen indirectly blocks COX, and that this blockade is ineffective in the presence of peroxides. This might explain why acetaminophen is effective in the central nervous system and in endothelial cells but not in platelets and immune cells, which have high levels of peroxides. Studies also report data suggesting that acetaminophen selectively blocks a variant of the COX enzyme that is different from the known variants COX-1 and COX-2. This enzyme is now referred to as COX-3. Its exact mechanism of action is still poorly understood, but future research may provide further insight into how it works. The antipyretic properties of acetaminophen are likely due to direct effects on the heat-regulating centers of the hypothalamus resulting in peripheral vasodilation, sweating and hence heat dissipation.