U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 12 results

Niacinamide, known as nicotinamide, is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Pellagra is a nutritional disease that occurs due to insufficient dietary amounts of vitamin B3 or the chemical it is made from (tryptophan). Symptoms of pellagra include skin disease, diarrhea, dementia, and depression. In addition, was experiments, revealed, that niacinamide hydroiodide might have role in ophthalmology and parenteral use of niacinamide hydroiodide can treat arteriosclerotic syndromes.
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Status:
Investigational
Source:
NCT00847197: Phase 2 Interventional Completed Dyslipidemia
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



MK-1903 is a potent and selective hydroxycarboxylic acid receptor 2 (HCA2, GPR109A) full agonist. Exhibits no binding at the GRP109B receptor. This drug had been in phase II clinical trial for the treatment of atherosclerosis and Dyslipidemia. But then, according to Merck, elevation of HDL cholesterol relative to placebo did not meet the trial's pre-specified primary objective for efficacy; no safety signals were implicated as drivers of the decision to discontinue development.
Status:
Investigational
Source:
INN:glunicate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Glunicate (LG 13979) is a long-acting nicotinic acid derivative that can lower plasma triglyceride levels, while leaving other lipoprotein parameters unaffected. It exerts a dose‐dependent reduction of plasma triglycerides and cholesterol. In rabbits, glunicate provided dose-dependent protection of the arterial wall from atheromatous lesions and from cholesterol and collagen accumulation. It has been shown that glunicate has prolonged activity on plasma free fatty acids and triglycerides, with long lasting and intense activity on plasma cholesterol.
Status:
Investigational
Source:
INN:oxiniacic acid [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Oxiniacic Acid is a nicotinic acid derivative, that shows potent hypolipidemic activity.
Hypolipidemic agent, Nicomol is an ingredient of Cholexamin in Japan. Cholexamin, a lipid metabolism and peripheral circulation improving agent, was launched by KYORIN Pharmaceutical in 1971. It is indicated for the treatment of hyperlipemia, improvement in peripheral circulatory disorder resulting from the following diseases Chilblain, limb arterial occlusive disease (obstructive thromboarteritis and arteriosclerosis obliterans), Raynaud syndrome.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Pirozadil (Pemix), a hypolipidemic agent that improves cerebral blood flow and Inhibits platelet aggregation. This drug was studied for the treatment of patients with Type IIa hyperlipoproteinemia.
Acipimox (5-methylpyrazinecarboxylic acid 4-oxide) is a new lipolysis inhibitor that has a distant chemical relationship with nicotinic acid (NA). The anti-lipolytic action of acipimox is mediated through suppression of intracellular cyclic AMP levels, with the subsequent decrease in cyclic AMP-dependent protein kinase activity, leading to the reduced association of hormone-sensitive lipase with triacylglycerol substrate in the lipid droplet of adipocytes. Acipimox has been identified as an agonist at G-protein coupled nicotinic acid HM74A and HM74B receptors. Acipimox (Olbetam) is indicated for the treatment as alternative or adjunct treatment to reduce triglyceride levels in patients who have not responded adequately to other treatments such as statin or fibrate treatment for hypertriglyceridaemia (Fredrickson type IV hyperlipoproteinaemia) and hypercholesterolaemia and hypertriglyceridaemia (Fredrickson type IIb hyperlipoproteinaemia).
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)

Nicofuranose is a niacin derivative used as a hypolipidemic agent. The Nicofuranose administration leads to inhibition of free fatty acid turnover and consequently a marked reduction in triglyceride turnover. Nicofuranose, unlike clofibrate, did not affect the mechanisms responsible for the clearance of plasma triglycerides.
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.

Showing 1 - 10 of 12 results