U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for isosorbide dinitrate

 
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.
Status:
First approved in 2002

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Oxaliplatin (brand name Eloxatin), a new generation of platinum derivatives discovered by Prof Kidani in 1976 at Nagoya University in Japan, was licensed-in and developed by Debiopharm. Eloxatin is typically administered in combination with fluorouracil and leucovorin for the adjuvant treatment of stage III colon cancer and for the treatment of advanced carcinoma of the colon or rectum. Oxaliplatin undergoes nonenzymatic conversion in physiologic solutions to active derivatives via displacement of the labile oxalate ligand. Several transient reactive species are formed, including monoaquo and diaquo 1,2-diaminocyclohexane (DACH) platinum, which covalently bind with macromolecules. Both inter- and intrastrand Pt-DNA crosslinks are formed. Crosslinks are formed between the N7 positions of two adjacent guanines (GG), adjacent adenine-guanines (AG), and guanines separated by an intervening nucleotide (GNG). These crosslinks inhibit DNA replication and transcription. Cytotoxicity is cell-cycle nonspecific.
Treprostinil (marketed under the trade names Remodulin for infusion) is a vasodilator that is used for the treatment of pulmonary arterial hypertension. Pulmonary arterial hypertension (PAH) is a disease in which blood pressure is abnormally high in the arteries between the heart and lungs. PAH is characterized by symptoms of shortness of breath during physical exertion. The condition can ultimately lead to heart failure. Treprostinil is a potent oral antiplatelet agent. The major pharmacologic actions of treprostinil are direct vasodilation of pulmonary and systemic arterial vascular beds and inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. Other studies have shown that treprostinil causes a dose-related negative inotropic and lusitropic effect. No major effects on cardiac conduction have been observed. Treprostinil had high affinity for the Prostaglandin D2 receptor (DP1), Prostaglandin E2 receptor EP2 subtype (EP2) and Prostaglandin D2 receptor (IP) receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, Prostaglandin F (FP) and thromboxane (TP) receptors. Treprostinil has demonstrated a unique effect on PPAR gamma, a transcription factor important in vascular pathogenesis as a mediator of proliferation, inflammation and apoptosis. Through a complementary, yet cyclic AMP-independent pathway, treprostinil activates PPARs, another mechanism that contributes to the anti-growth benefits of the prostacyclin class.
Epoprostenol (marketed as FLOLAN, VELETRI) is a prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. Epoprostenol (PGI2, PGX, prostacyclin), a metabolite of arachidonic acid, is a naturally occurring prostaglandin with potent vasodilatory activity and inhibitory activity of platelet aggregation. FLOLAN (epoprostenol sodium) for Injection is a sterile sodium salt formulated for intravenous (IV) administration. Epoprostenol has two major pharmacological actions: (1) direct vasodilation of pulmonary and systemic arterial vascular beds, and (2) inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. The effect of epoprostenol on heart rate in animals varies with dose. At low doses, there is vagally mediated brudycardia, but at higher doses, epoprostenol causes reflex tachycardia in response to direct vasodilation and hypotension. No major effects on cardiac conduction have been observed. Additional pharmacologic effects of epoprostenol in animals include bronchodilation, inhibition of gastric acid secretion, and decreased gastric emptying. No available chemical assay is sufficiently sensitive and specific to assess the in vivo human pharmacokinetics of epoprostenol. FLOLAN is indicated for the long-term intravenous treatment of primary pulmonary hypertension and pulmonary hypertension associated with the scleroderma spectrum of disease in NYHA Class III and Class IV patients who do not respond adequately to conventional therapy.
Manganese citrate is generally recognized as safe direct food additive. Manganese citrate complex has being used in the determination of liver enzyme activities in the aging process and following treatment with aminoethylisothiuronium bromide hydrobromide (AET).
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)