U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 10 results

Etomidate (AMIDATE®) is an imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It is intended for the induction of general anesthesia by intravenous injection. Etomidate (AMIDATE®) is also indicated for the supplementation of subpotent anesthetic agents, such as nitrous oxide in oxygen, during maintenance of anesthesia for short operative procedures such as dilation and curettage or cervical conization. It also produces a unique toxicity among anesthetic drugs - inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate (AMIDATE®) in the central nervous system are specific gamma-aminobutyric acid (GABA) type A receptor subtypes. The R(+) isomer of etomidate is 10 times more potent than its S(-) isomer at potentiating GABA-A receptor activity.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Esketamine is an S(+)-enantiomer of ketamine. It is a nonselective, noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor. A nasal spray, containing esketamine, was approved in 2019 for the treatment of treatment-resistant depression in adults, in conjunction with an oral antidepressant, and is marketed under tradename SPARAVATO. Esketamine is a schedule III drug product in the USA.
Status:
First marketed in 1844
Source:
nitrous oxide
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Nitrous oxide (N2O, laughing gas) was first discovered by the English scientist Joseph Priestly and has been used for more than 150 years. It has remained one of the most widely used anesthetics in both dental and medical applications. This small and simple inorganic chemical molecule has indisputable effects of analgesia, anxiolysis, and anesthesia that are of great clinical interest. As a general anesthetic, it is very weak and is generally not used as a single agent. It may be used as a carrier gas with oxygen in combination with more potent general inhalational gases for surgical anesthesia. In dentistry, it is commonly used as a single agent (with oxygen) for partial sedation, most commonly in pediatric dental populations. Findings to date indicate that the analgesic effect of N2O is opioid in nature, and, like morphine, may involve a myriad of neuromodulators in the spinal cord. The anxiolytic effect of N2O, on the other hand, resembles that of benzodiazepines and may be initiated at selected subunits of the gamma-aminobutyric acid type A (GABA(A)) receptor. Similarly, the anesthetic effect of N2O may involve actions at GABA(A) receptors and possibly at N-methyl-D-aspartate receptors as well.
Status:
Possibly Marketed Outside US
Source:
Alfaxan by Glaxo
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Alfaxalone is a rapidly acting hydrophobic synthetic neurosteroid. It is indicated for the induction and maintenance of anesthesia and for induction of anesthesia followed by maintenance with an inhalant anesthetic, in cats and dogs. Alfaxalone induces anaesthesia through activity at the gamma amino butyric acid sub-type A receptor (GABAA) present on cells in the Central Nervous System (CNS). Alfaxalone enhances the effects of GABA at the GABAA receptors resulting in opening of channels into the cells and an influx of chloride ions. This causes hyperpolarisation of the cells and inhibition of neural impulse transmission. Alfaxalone can be safely combined with premedicants (xylazine, (dex)medetomidine, acepromazine, midazolam), opioids (morphine, methadone, hydromorphone, butorphanol, nalbuphine, buprenorphine, fentanyl), and NSAIDs. Alfaxalone’s adverse reactions are: hypotension, tachycardia, apnea, hypertension, bradypnea and others.
Propanidid (Epontol) is an analgetically potent and shortterm anesthetic, widely used in the 1960s. It was originally introduced by Bayer in 1963. Epontol, an injectable emulsion formulation of propanidid, provided by Bayer, was withdrawn from the market in Great Britain in 1983 because of concern over anaphylactoid reactions. Thus, in spite of the fact that propanidid provides shorter and more predictable recovery times than propofol, it has not been accepted widely as an injectable anesthetic. Even though Cremophor EL has been shown to cause anaphylactic reactions in humans in several cases (both when given intravenously and orally), it is still debated whether or not propanidid itself may have contributed to the reactions. It has been argued that the toxic effects or reactions to propanidid (and Althesin) were due to the drugs themselves. Several cases of negative reactions have been recorded for different drugs using Cremophor EL as solubilizer. This suggest that the negative reactions were mainly caused by Cremophor and not by the drug substances themselves. Propanidid is presumed to work as a GABA receptor agonist.
Status:
Possibly Marketed Outside US
Source:
NCT02682758: Phase 4 Interventional Completed Anesthesia
(2016)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Xenon is a noble gas used as an anesthetic agent. Xenon can associate with amino acid side chains of the active site of enzymes such as serine proteinases (including elastases and collagenases); these enzymes can form a specific binding cavity for single xenon atom without inducing major changes in protein structure. It has been demonstrated that xenon binds within the heme cavity of cytochrome P-450 monooxygenases and is capable of inhibiting the catalytic activity of some enzymes in vitro. Current evidence suggests that inhibition of N-methyl-D-aspartate (NMDA) receptor signaling is the mechanism by which xenon induces anesthesia. Although approved for use in anesthesia in Russia in 2000, it was unavailable for use in western countries until October 2005 when approval for its use was granted in Germany.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Sodium oxybate is the sodium salt of gamma-hydroxybutyrate (GHB), an endogenous metabolite of gamma-aminobutyric acid (GABA) a major inhibitory neurotransmitter. Evidence suggests a role for GHB as a neuromodulator/neurotransmitter. Under endogenous conditions and concentrations, and depending on the cell group affected, GHB may increase or decrease neuronal activity by inhibiting the release of neurotransmitters that are co-localised with GHB. After exogenous administration, most of the observed behavioural effects appear to be mediated via the activity of GHB at GABA(B) receptors, as long as the concentration is sufficient to elicit binding, which does not happen at endogenous concentrations. Xyrem (sodium oxybate) oral solution is indicated for the treatment of cataplexy in narcolepsy and excessive daytime sleepiness (EDS) in narcolepsy.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Propofol (2,6-diisopropylphenol) is an intravenous anaesthetic agent used for induction and maintenance of general anaesthesia. IV administration of propfol is used to induce unconsciousness after which anaesthesia may be maintained using a combination of medications. It is extensively metabolized, with most of the administered dose appearing in the urine as glucuronide conjugates. Favorable operating conditions and rapid recovery are claimed as the main advantages in using propofol, whereas disadvantages include a relatively high incidence of apnea, and blood pressure reductions. The action of propofol involves a positive modulation of the inhibitory function of the neurotransmitter gama-aminobutyric acid (GABA) through GABA-A receptors. Due to its high lipid-solubility, propofol was initially formulated as a solution with the surfactant Cremophor EL, but the occurrence of pain on injection and anaphylactoid reactions prompted to search for alternative formulations. Results from using cyclodextrins, water-soluble prodrugs, and adopting Bodor's approach to the site-specific chemical delivery system (CDS), as well as the advantages provided by computer-controlled infusion systems, are examined in some detail.
Droperidol produces marked tranquilization and sedation. It allays apprehension and provides a state of mental detachment and indifference while maintaining a state of reflex alertness. Droperidol produces an antiemetic effect as evidenced by the antagonism of apomorphine in dogs. It lowers the incidence of nausea and vomiting during surgical procedures and provides antiemetic protection in the postoperative period. Droperidol potentiates other CNS depressants. It produces mild alpha-adrenergic blockade, peripheral vascular dilatation and reduction of the pressor effect of epinephrine. It can produce hypotension and decreased peripheral vascular resistance and may decrease pulmonary arterial pressure (particularly if it is abnormally high). It may reduce the incidence of epinephrine-induced arrhythmias, but it does not prevent other cardiac arrhythmias. The exact mechanism of action is unknown, however, droperidol causes a CNS depression at subcortical levels of the brain, midbrain, and brainstem reticular formation. It may antagonize the actions of glutamic acid within the extrapyramidal system. It may also inhibit cathecolamine receptors and the reuptake of neurotransmiters and has strong central antidopaminergic action and weak central anticholinergic action. It can also produce ganglionic blockade and reduced affective response. The main actions seem to stem from its potent Dopamine (2) receptor antagonism with minor antagonistic effects on alpha-1 adrenergic receptors as well. Droperidol is used to produce tranquilization and to reduce the incidence of nausea and vomiting in surgical and diagnostic procedures.