{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
amiodarone
to a specific field?
There is one exact (name or code) match for amiodarone
Status:
US Approved Rx
(2008)
Source:
ANDA077234
(2008)
Source URL:
First approved in 1985
Source:
CORDARONE by WYETH PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Amiodarone is an antiarrhythmic with mainly class III properties, but it possesses electrophysiologic characteristics of all four Vaughan Williams classes. Like class I drugs, amiodarone blocks sodium channels at rapid pacing frequencies, and like class II drugs, amiodarone exerts a noncompetitive antisympathetic action. In addition to blocking sodium channels, amiodarone blocks myocardial potassium channels, which contributes to slowing of conduction and prolongation of refractoriness. It is indicated for initiation of treatment and prophylaxis of frequently recurring ventricular fibrillation and hemodynamically unstable ventricular tachycardia in patients refractory to other therapy. The most common adverse reactions (1-2%) leading to discontinuation of intravenous amiodarone therapy are hypotension, asystole/cardiac arrest/pulseless electrical activity, VT, and cardiogenic shock. Other important adverse reactions are, torsade de pointes (TdP), congestive heart failure, and liver function test abnormalities. Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone.
Status:
US Approved Rx
(2008)
Source:
ANDA077234
(2008)
Source URL:
First approved in 1985
Source:
CORDARONE by WYETH PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Amiodarone is an antiarrhythmic with mainly class III properties, but it possesses electrophysiologic characteristics of all four Vaughan Williams classes. Like class I drugs, amiodarone blocks sodium channels at rapid pacing frequencies, and like class II drugs, amiodarone exerts a noncompetitive antisympathetic action. In addition to blocking sodium channels, amiodarone blocks myocardial potassium channels, which contributes to slowing of conduction and prolongation of refractoriness. It is indicated for initiation of treatment and prophylaxis of frequently recurring ventricular fibrillation and hemodynamically unstable ventricular tachycardia in patients refractory to other therapy. The most common adverse reactions (1-2%) leading to discontinuation of intravenous amiodarone therapy are hypotension, asystole/cardiac arrest/pulseless electrical activity, VT, and cardiogenic shock. Other important adverse reactions are, torsade de pointes (TdP), congestive heart failure, and liver function test abnormalities. Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone.
Status:
US Approved Rx
(2018)
Source:
NDA211651
(2018)
Source URL:
First approved in 2018
Source:
NDA211651
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Talazoparib (BMN 673) demonstrates excellent potency, inhibiting PARP1 and PARP2 enzyme activity. It inhibits PARP-mediated PARylation in a whole-cell assay and prevents proliferation of cancer cells carrying mutant BRCA1/2. Talazoparib is orally available, displaying favorable pharmacokinetic properties and remarkable antitumor efficacy in the BRCA1 mutant MX-1 breast cancer xenograft model following oral administration as a single-agent or in combination with chemotherapy agents such as temozolomide and cisplatin. Medivation (a subsidiary of Pfizer) is developing talazoparib (MDV 3800, formerly BMN 673 and LT 673) for the treatment of genetically defined cancers. On October 16, 2018, the FDA approved talazoparib (TALZENNA, Pfizer Inc.) for patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm), HER2‑negative locally advanced or metastatic breast cancer.
Status:
US Approved Rx
(2015)
Source:
NDA022526
(2015)
Source URL:
First approved in 2015
Source:
NDA022526
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Flibanserin is the first drug to be approved for hypoactive sexual desire disorder (HSDD) in premenopausal women by the FDA in August 2015. It was originally developed as an antidepressant medication by Boehringer Ingelheim, but showed lack of efficacy in trials and was further developed as a hypoactive sexual disorder drug by Sprout Pharmaceuticals. Flibanserin's mechanism of action is attributed to its high affinity for 5-HTA1 and 5-HTA2 receptors, displaying agonist activity on 5-HTA1 and antagonist on 5-HTA2, resulting in lowering of serotonin in the brain as well as an effect on increasing norepinephrine and dopamine neurotransmitters. Flibansetrin has high affinity for serotonin receptors in the brain: it acts as an agonist on 5-HT1A and an antagonist on 5-HT2A. In vivo, flibanserin binds equally to 5-HT1A and 5-HT2A receptors. However, under higher levels of brain 5-HT (i.e., under stress), flibanserin may occupy 5-HT2A receptors in higher proportion than 5-HT(1A) receptors. It may also moderately antagonize D4 (dopamine) receptors and 5-HT2B and 5-HTB2C. Its action on neurotransmitter receptors may contribute to reduction in serotonin levels and increase in dopamine and norepinephrine levels, all of which may play part in reward processing. Flibanserin is sold under the trade name Addyi and indicated for the treatment of premenopausal women with acquired, generalized hypoactive sexual desire disorder (HSDD) as characterized by low sexual desire that causes marked distress or interpersonal difficulty.
Status:
US Approved Rx
(2015)
Source:
NDA206500
(2015)
Source URL:
First approved in 2015
Source:
NDA206500
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rolapitant (VARUBI) is neurokinin 1 (NK1) receptor antagonist. Rolapitant does not have significant affinity for the NK2 or NK3 receptors. Drug is indicated in combination with other antiemetic agents in adults for the prevention of delayed nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. Most common adverse reactions are: neutropenia and hiccups at Cisplatin Based Highly Emetogenic Chemotherapy; decreased appetite, neutropenia and dizziness at Moderately Emetogenic Chemotherapy and Combinations of Anthracycline and Cyclophosphamide. Inhibition of BCRP and P-gp by rolapitant can increase plasma concentrations of the concomitant drug and potential for adverse reactions. Strong CYP3A4 Inducers (e.g., rifampin) can significantly reduce plasma concentrations of rolapitant and decrease the efficacy of VARUBI.
Status:
US Approved Rx
(2011)
Source:
NDA202429
(2011)
Source URL:
First approved in 2011
Source:
NDA202429
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Vemurafenib (trade name Zelboraf) is a low molecular weight, orally available kinase inhibitor. It inhibits of some mutated forms of BRAF serinethreonine kinase, including BRAF V600E and is indicated for the treatment of patients with unresectable or metastatic melanoma with BRAF V600E mutation as detected by an FDA-approved test. Vemurafenib also inhibits other kinases in vitro such as CRAF, ARAF, wild-type BRAF, SRMS, ACK1, MAP4K5 and FGR at similar concentrations. Vemurafenib is not recommended for use in patients with wild-type BRAF melanoma. Zelboraf does not cure melanoma, but stops it's progression. Some 26% of patients in clinical trials developed a non melanoma form of skin cancer called cutaneous squamous cell carcinoma, which can usually be removed via relatively simple surgery. Other side effects include joint pain, rash, hair loss, fatigue, nausea, and skin sensitivity to sunlight. Patients taking Zelboraf must avoid sun exposure. It's not yet clear how long Zelboraf can increase melanoma survival.
Status:
US Approved Rx
(2022)
Source:
ANDA216229
(2022)
Source URL:
First approved in 2005
Source:
NDA021882
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Deferasirox (marketed as Exjade, Desirox, Deferasirox) is an iron chelator. Its main use is to reduce chronic iron overload in patients who are receiving long term blood transfusions for conditions such as beta-thalassemia and other chronic anemias. It is the first oral medication approved for this purpose in the USA by FDA in November 2005. It is approved in the European Union by the European Medicines Agency (EMA) for children 6 years and older for chronic iron overload from repeated blood transfusions. Deferasirox is highly selective for iron as Fe3+. In approximately 1-year clinical trials of patients with transfusional chronic iron overload associated with beta-thalassaemia, sickle cell disease, myelodysplastic syndrome or other rare chronic anaemias, deferasiroxhad a beneficial effect on liver iron concentrations (LIC) and serum ferritin levels. Deferasirox can cause acute renal failure, fatal in some patients and requiring dialysis in others. It was showed that most fatalities occurred in patients with multiple comorbidities in advanced stages of their hematological disorders.
Status:
US Approved Rx
(2008)
Source:
NDA022023
(2008)
Source URL:
First approved in 2003
Source:
NDA021549
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fosaprepitant (Emend for Injection (US), Ivemend (EU)) is a prodrug of Aprepitant. Once biologically activated, the drug acts as a substance P/neurokinin 1 (NK1) receptor antagonist which, in combination with other antiemetic agents, is indicated for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Aprepitant is a selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptors. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting (CI NV). Aprepitant has been shown in animal models to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with Aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors. Animal and human studies show that Aprepitant augments the antiemetic activity of the 5-HT3-receptor antagonist ondansetron and the corticosteroid ethasone and inhibits both the acute and delayed phases of cisplatin induced emesis. In summary, the active form of fosaprepitant is as an NK1 antagonist which is because it blocks signals given off by NK1 receptors. This therefore decreases the likelihood of vomiting in patients experiencing. Fosaprepitant is used for the prevention of nausea and vomiting associated with highly emetogenic cancer chemotherapy.
Status:
US Approved Rx
(2016)
Source:
ANDA204060
(2016)
Source URL:
First approved in 1999
Source:
AGENERASE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
US Approved Rx
(2018)
Source:
NDA208255
(2018)
Source URL:
First approved in 1998
Source:
SUSTIVA by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Efavirenz (brand names Sustiva® and Stocrin®) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used as part of highly active antiretroviral therapy (HAART) for the treatment of a human immunodeficiency virus (HIV) type 1. For HIV infection that has not previously been treated, efavirenz and lamivudine in combination with zidovudine or tenofovir is the preferred NNRTI-based regimen. Efavirenz is also used in combination with other antiretroviral agents as part of an expanded postexposure prophylaxis regimen to prevent HIV transmission for those exposed to materials associated with a high risk for HIV transmission.
Status:
US Approved Rx
(2016)
Source:
ANDA207407
(2016)
Source URL:
First approved in 1996
Source:
NORVIR by ABBOTT
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ritonavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Ritonavir binds to the protease active site and inhibits the activity of the enzyme. It is FDA approved for the treatment of HIV-1 infection. In patients receiving medications metabolized by CYP3A or initiation of medications metabolized by CYP3A in patients already receiving Ritonavir, may increase plasma concentrations of medications metabolized by CYP3A. The most frequently reported adverse drug reactions among patients receiving Ritonavir alone or in combination with other antiretroviral drugs were gastrointestinal (including diarrhea, nausea, vomiting, abdominal pain (upper and lower)), neurological disturbances (including paresthesia and oral paresthesia), rash, and fatigue/asthenia.