{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG" in comments (approximate match)
Status:
US Approved Rx
(2011)
Source:
NDA202192
(2011)
Source URL:
First approved in 2011
Source:
NDA202192
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ruxolitinib (trade names Jakafi and Jakavi, by Incyte Pharmaceuticals and Novartis) is a drug for the treatment of intermediate or high-risk myelofibrosis, a type of myeloproliferative disorder that affects the bone marrow. It is also being investigated for the treatment of other types of cancer (such as lymphomas and pancreatic cancer), for polycythemia vera, for plaque psoriasis, and for alopecia areata. Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) known to be associated with dysregulated JAK1 and JAK2 signaling. Ruxolitinib is a Janus-associated kinase (JAK) inhibitor with potential antineoplastic and immunomodulating activities. Ruxolitinib specifically binds to and inhibits protein tyrosine kinases JAK 1 and 2, which may lead to a reduction in inflammation and an inhibition of cellular proliferation. The JAK-STAT (signal transducer and activator of transcription) pathway plays a key role in the signaling of many cytokines and growth factors and is involved in cellular proliferation, growth, hematopoiesis, and the immune response; JAK kinases may be upregulated in inflammatory diseases, myeloproliferative disorders, and various malignancies. In a mouse model of JAK2V617F-positive MPN, ruxolitinib prevented splenomegaly, preferentially decreased JAK2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines (eg, TNF-α, IL-6). Ruxolitinib was initially synthesized at Incyte Corporation that acquired the rights to develop and commercialize the drug in US. Incyte amended its Collaboration and License Agreement with Novartis, granting Novartis exclusive research, development and commercialization rights for ruxolitinib outside the U.S.
Status:
US Approved Rx
(2011)
Source:
NDA022405
(2011)
Source URL:
First approved in 2011
Source:
NDA022405
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Vandetanib, 4-anilinoquinazoline, is an anti-cancer drug that with the potential for use in a broad range of tumour types. In 2011 vandetanib (trade name Caprelsa) was approved by the FDA to treat nonresectable, locally advanced, or metastatic medullary thyroid cancer in adult patients. In vitro studies have shown that vandetanib inhibits the tyrosine kinase activity of the EGFR and VEGFR families, RET, BRK, TIE2, and members of the EPH receptor and Src kinase families. These receptor tyrosine kinases are involved in both normal cellular function and pathologic processes such as oncogenesis, metastasis, tumor angiogenesis, and maintenance of the tumor microenvironment. Vandetanib was shown to inhibit epidermal growth factor (EGF)-stimulated receptor tyrosine kinase phosphorylation in tumor cells and endothelial cells and VEGF-stimulated tyrosine kinase phosphorylation in endothelial cells. Vandetanib administration reduced tumor cell-induced angiogenesis, tumor vessel permeability, and inhibited tumor growth and metastasis in mouse models of cancer.
Status:
US Approved Rx
(2020)
Source:
NDA212269
(2020)
Source URL:
First approved in 2011
Source:
NDA021825
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Deferiprone (trade name Ferriprox) is an iron chelator indicated for the treatment of patients with transfusional iron overload due to thalassemia syndromes when current chelation therapy is inadequate. Deferiprone is an orally bioavailable bidentate ligand with iron chelating activity. Deferiprone binds to iron in a 3:1 (ligand:iron) molar ratio. By binding to iron, deferiprone is able to remove excess iron from the body. All the adverse effects of deferiprone are considered reversible, controllable and manageable. These include agranulocytosis with frequency of about 0.6%, neutropenia 6%, musculoskeletal and joint pains 15%, gastrointestinal complains 6% and zinc deficiency 1%.
Status:
US Approved Rx
(2010)
Source:
NDA022562
(2010)
Source URL:
First approved in 2010
Source:
NDA022562
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Carglumic acid is a Carbamoyl Phosphate Synthetase 1 (CPS 1) allosteric modulator. CPS1 is found in the mitochondria and is the first enzyme of the urea cycle, which converts ammonia into urea. Carglumic acid acts as a replacement for NAG in NAGS deficiency patients by activating CPS1 but it does not help to regulate the urea cycle. Carglumic acid under the trade name Carbaglu indicated as adjunctive therapy for the treatment of acute hyperammonemia due to the deficiency of the hepatic enzyme N-acetylglutamate synthase (NAGS). In addition, as maintenance therapy for the treatment of chronic hyperammonemia due to the deficiency of the hepatic enzyme N-acetylglutamate synthase (NAGS). This rare genetic disorder results in elevated blood levels of ammonia, which can eventually cross the blood–brain barrier and cause neurologic problems, cerebral edema, coma, and death.
Status:
US Approved Rx
(2022)
Source:
ANDA208003
(2022)
Source URL:
First approved in 2010
Source:
NDA022527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fingolimod (FTY720) is a sphingosine 1-phosphate receptor modulator indicated and approved for the treatment of relapsing-remitting multiple sclerosis. Fingolimod (trade name Gilenya, Novartis) is metabolized by sphingosine kinase to the active metabolite, fingolimod-phosphate. Fingolimod-phosphate
is a sphingosine 1-phosphate receptor modulator, and binds with high affinity to sphingosine 1-phosphate receptors 1, 3,
4, and 5. Fingolimod-phosphate blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of
lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is
unknown, but may involve reduction of lymphocyte migration into the central nervous system. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials.
Status:
US Approved Rx
(2021)
Source:
ANDA205426
(2021)
Source URL:
First approved in 2009
Source:
NDA022334
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Everolimus is a derivative of Rapamycin (sirolimus), it is a mTOR inhibitor that binds with high affinity to the FK506 binding protein-12 (FKBP-12), thereby forming a drug complex that inhibits the activation of mTOR. This inhibition reduces the activity of effectors downstream, which leads to a blockage in the progression of cells from G1 into S phase, and subsequently inducing cell growth arrest and apoptosis. Everolimus also inhibits the expression of hypoxia-inducible factor, leading to a decrease in the expression of vascular endothelial growth factor. The result of everolimus inhibition of mTOR is a reduction in cell proliferation, angiogenesis, and glucose uptake. Everolimus is indicated for the treatment of postmenopausal women with advanced hormone receptor-positive, HER2-negative breast cancer (advanced HR+ BC) in combination with exemestane, after failure of treatment with letrozole or anastrozole. Indicated for the treatment of adult patients with progressive neuroendocrine tumors of pancreatic origin (PNET) with unresectable, locally advanced or metastatic disease. Indicated for the treatment of adult patients with advanced renal cell carcinoma (RCC) after failure of treatment with sunitinib or sorafenib. Indicated for the treatment of adult patients with renal angiomyolipoma and tuberous sclerosis complex (TSC), not requiring immediate surgery. Indicated in pediatric and adult patients with tuberous sclerosis complex (TSC) for the treatment of subependymal giant cell astrocytoma (SEGA) that requires therapeutic intervention but cannot be curatively resected. Everolimus is marketed by Novartis under the tradenames Zortress (USA) and Certican (Europe and other countries) in transplantation medicine, and as Afinitor (general tumours) and Votubia (tumours as a result of TSC) in oncology. Everolimus is also available from Biocon, with the brand name Evertor, from Natco Pharma, with the brand name Temonat, from Ranbaxy Laboratories, with the brand name of Imozide, from Emcure Pharmaceuticals, with the brand name of Temcure, among over 20 different brands.
Status:
US Approved Rx
(2009)
Source:
NDA022268
(2009)
Source URL:
First approved in 2009
Source:
NDA022268
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Artemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy against malaria. Artemether is rapidly metabolized into an active metabolite dihydroartemisinin (DHA). The antimalarial activity of artemether and DHA has been attributed to endoperoxide moiety. Artemethe involves an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ions, in the acidic parasite food vacuole, which results in the generation of cytotoxic radical species. The generally accepted mechanism of action of peroxide antimalarials involves interaction of the peroxide-containing drug with heme, a hemoglobin degradation byproduct, derived from proteolysis of hemoglobin. This interaction is believed to result in the formation of a range of potentially toxic oxygen and carbon-centered radicals. Other mechanisms of action for artemether include their ability to reduce fever by production of signals to hypothalamus thermoregulatory center. Now, recent research has shown the presence of a new, previously unknown cyclooxygenase enzyme COX-3, found in the brain and spinal cord, which is selectively inhibited by artemether, and is distinct from the two already known cyclooxygenase enzymes COX-1 and COX-2. It is now believed that this selective inhibition of the enzyme COX-3 in the brain and spinal cord explains the ability of artemether in relieving pain and reducing fever which is produced by malaria. The most common adverse reactions in adults (>30%) are headache, anorexia, dizziness, asthenia, arthralgia and myalgia.
Status:
US Approved Rx
(2009)
Source:
NDA022468
(2009)
Source URL:
First approved in 2009
Source:
NDA022468
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Pralatrexate (PDX or 10-propargyl-10-deazaaminopterin) is a folate analogue that is internalised by the reduced folate carrier 1 (RFC-1) protein, and polyglutamylated by the enzyme folylpolyglutamyl synthetase (FPGS), resulting in accumulation of the antifolate. Pralatrexate, a methotrexate analogue, is intended as an inhibitor of dihydrofolate reductase (DHFR), an enzyme which
catalyses the reduction of dihydrofolic acid to tetrahydrofolic acid. Inhibition of DHFR leads to a depletion of intracellular reduced folate stores, thereby leading to a disruption of DNA synthesis. Preclinical studies in vitro and in models of B-cell lymphomas, T-cell lymphomas and NSCLC indicated that pralatrexate exhibited antitumor activity that was superior to the activity of other antifolates. FOLOTYN (pralatrexate injection) is indicated for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma.
Status:
US Approved Rx
(2018)
Source:
NDA204441
(2018)
Source URL:
First approved in 2009
Source:
NDA022275
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Tolvaptan is a selective and competitive arginine vasopressin receptor 2 antagonist. Vasopressin acts on the V2 receptors found in the walls of the vasculature and luminal membranes of renal collecting ducts. By blocking V2 receptors in the renal collecting ducts, aquaporins do not insert themselves into the walls thus preventing water absorption. This action ultimately results in an increase in urine volume, decrease urine osmolality, and increase electrolyte-free water clearance to reduce intravascular volume and an increase serum sodium levels. Tolvaptan is especially useful for heart failure patients as they have higher serum levels of vasopressin. Tolvaptan is used to treat low blood sodium levels (hyponatremia) associated with various conditions like congestive heart failure, cirrhosis, and syndrome of inappropriate antidiuretic hormones (SIADH). FDA approved on May 19, 2009. Tolvaptan is sold under the trade names Samsca and Jinarc.
Status:
US Approved Rx
(2023)
Source:
ANDA217844
(2023)
Source URL:
First approved in 2008
Source:
DHA by Mission Pharmacal Company
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Icosapent is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. EPA can be used for lowering elevated triglycerides in those who are hyperglyceridemic. In addition, EPA may play a therapeutic role in patients with cystic fibrosis by reducing disease severity and may play a similar role in type 2 diabetics in slowing the progression of diabetic nephropathy.