U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 71 - 80 of 6013 results

Status:
First approved in 1976

Class (Stereo):
CHEMICAL (ACHIRAL)



Tolmetin is a nonsteroidal anti-inflammatory agent. It was marketed as Tolectin in USA. TOLECTIN (tolmetin sodium) is indicated for the relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. TOLECTIN is indicated in the treatment of acute flares and the long-term management of the chronic disease. TOLECTIN is also indicated for treatment of juvenile rheumatoid arthritis. The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action.
Status:
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Molindone (Moban) is a therapeutic antipsychotic, used in the treatment of schizophrenia. The exact mechanism has not been established, however, based on electroencephalogram (EEG) studies, molindone is thought to act by occupying (antagonizing) dopamine (D2) receptor sites in the reticular limbic systems in the brain, thus decreasing dopamine activity. Decreased dopamine activity results in decreased physiological effects normally induced by excessive dopamine stimulation, such as those typically seen in manifestations of psychotic disorders. The side effect profile of molindone is similar to that of other typical antipsychotics. Unlike most antipsychotics, however, molindone use is associated with weight loss.
Status:
First approved in 1972

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

FLUORIDE ION F-18 (as sodium fluoride F-18) is a radioactive diagnostic agent for positron emission tomography (PET) indicated for imaging of bone to define areas of altered osteogenic activity. FLUORIDE ION F-18 normally accumulates in the skeleton in an even fashion, with greater deposition in the axial skeleton (e.g. vertebrae and pelvis) than in the appendicular skeleton and greater deposition in the bones around joints than in the shafts of long bones. Increased FLUORIDE ION F-18 deposition in the bone can occur in areas of increased osteogenic activity during growth, infection, malignancy (primary or metastatic) following trauma, or inflammation of the bone.
Doxycycline hyclate (Vibramycin, Periostat, Vibra-Tabs) is salt of tetracycline antibiotic Doxycycline, that used to treat many kinds of infections, like dental, skin, respiratory, and urinary tract infections. It also treats acne, Lyme disease, malaria, and certain sexually transmitted diseases. Doxycycline hyclate is a light-yellow crystalline powder which is soluble in water, while doxycycline monohydrate is very slightly soluble in water. Doxycycline is bacteriostatic, inhibiting bacterial protein synthesis due to disruption of transfer RNA and messenger RNA at ribosomal sites. Doxycycline hyclate is indicated for use in the treatment of chronic adult periodontitis for a gain in clinical attachment, reduction in probing depth, and reduction in bleeding on probing.
Oxacillin is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Oxacillin has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of Oxacillin results from the inhibition of cell wall synthesis and is mediated through Oxacillin binding to penicillin binding proteins (PBPs). Oxacillin is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, Oxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Oxacillin interferes with an autolysin inhibitor. Oxacillin is used in the treatment of resistant staphylococci infections. Oxacillin sodium was marketed under the trade name Bactocill.
Echothiophate is a potent, long-acting irreversible cholinesterase inhibitor used as an ocular hypertensive in the treatment of glaucoma. Occasionally used for accomodative esotropia. Echothiophate iodide for ophthalmic solution will depress both plasma and erythrocyte cholinesterase levels in most patients after a few weeks of eye drop therapy by binding irreversibly to cholinesterase, and thus long acting due to the slow rate of hydrolysis by cholinesterase. It causes miosis, increase in facility of outflow of aqueous humor, fall in intraocular pressure, and potentiation of accommodation.
Vancomycin is a branched tricyclic glycosylated nonribosomal peptide produced by the fermentation of the Actinobacteria species Amycolatopsis orientalis (formerly Nocardia orientalis). Vancomycin became available for clinical use >50 years ago. It is often reserved as the "drug of last resort", used only after treatment with other antibiotics had failed. Vancomycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections: Listeria monocytogenes, Streptococcus pyogenes, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus agalactiae, Actinomyces species, and Lactobacillus species. The combination of vancomycin and an aminoglycoside acts synergistically in vitro against many strains of Staphylococcus aureus, Streptococcus bovis, enterococci, and the viridans group streptococci. The bactericidal action of vancomycin results primarily from inhibition of cell-wall biosynthesis. Specifically, vancomycin prevents the incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides. Normally this is a five-point interaction. This binding of vancomycin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, vancomycin alters bacterial-cell-membrane permeability and RNA synthesis. There is no cross-resistance between vancomycin and other antibiotics. Vancomycin is not active in vitro against gram-negative bacilli, mycobacteria, or fungi.
Chloroprocaine (Nesacaine®, Nesacaine®-MPF) is a non pyrogenic local anesthetic. Nesacaine® is indicated for the production of local anesthesia by infiltration and peripheral nerve block. It is not to be used for lumbar or caudal epidural anesthesia. Nesacaine®-MPF is indicated for the production of local anesthesia by infiltration, peripheral and central nerve block, including lumbar and caudal epidural blocks. Nesacaine® and Nesacaine®-MPF are not to be used for subarachnoid administration. Chloroprocaine (Nesacaine®, Nesacaine®-MPF), like other local anesthetics, blocks the generation and the conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve, by slowing the propagation of the nerve impulse and by reducing the rate of rise of the action potential. It acts mainly by inhibiting sodium influx through voltage gated sodium channels in the neuronal cell membrane of peripheral nerves. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is thus inhibited.
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Trihexyphenidyl (Artane, Apo-Trihex, Parkin, Pacitane), also known as benzhexol and trihex has been in clinical usage for decades.It is an anticholinergic used in the symptomatic treatment of all etiologic groups of parkinsonism and drug induced extrapyramidal reactions (except tardive dyskinesia). Trihexyphenidyl possesses both anticholinergic and antihistaminic effects, although only the former has been established as therapeutically significant in the management of parkinsonism. Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinson's disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. Trihexyphenidyl is indicated for the treatment of parkinson's disease and extrapyramidal reactions caused by drugs.